核心:
- 建立的是前面所有层与后面所有层的密集连接(dense connection),加强了前后层之间的信息流通,在一定程度上缓解了梯度消失现象,从而可以将神经网络搭建得很深
- 通过特征在channel上的连接来实现特征重用(feature reuse)
DenseNet的前向过程
特征传递方式是直接将前面所有层的特征concat后传到下一层,而不是前面层都要有一个箭头指向后面的所有层
DenseBlock
CNN网络一般要经过Pooling或者stride>1的Conv来降低特征图的大小,而DenseNet的密集连接方式需要特征图大小保持一致。为了解决这个问题,DenseNet网络中使用DenseBlock+Transition的结构,
- 其中DenseBlock是包含很多层的模块,每个层的特征图大小相同,层与层之间采用密集连接方式。结构:BN+ReLU+3x3 Conv
- 而Transition模块是连接两个相邻的DenseBlock,并且通过Pooling使特征图大小降低
- 它主要是连接两个相邻的DenseBlock,并且降低特征图大小,结构为BN+ReLU+1x1 Conv+2x2 AvgPooling
- 通过1×1卷积层来减小通道数,并使用步幅为2的平均池化层减半高和宽,从而进一步降低模型复杂度。
- 还可以起到压缩模型的作用,通过压缩系数实现,进一步提高网络的紧密度
Growth rate
所有DenseBlock中各个层卷积之后均输出k个特征图,k在DenseNet称为growth rate,K的实际含义就是这层新提取出的特征
一般情况下使用较小的k(比如12),就可以得到较佳的性能假定输入层的特征图的channel数为k0,那么l层的输入channel数为k0+k(l-1),因此随着层数增加,尽管k设定的非常小,但DenseBlock的输入会非常多,不过这是由于特征重用所造成的,每个层仅有k个特征是自己的(每个层所独有的特征图比较小)。
Bottleneck
尽管每前进一层,只产生K张新特征图,但还是嫌多,于是在进行3×3卷积之前先用一个 1×1卷积将输入的特征图个数降低到 4*k
DenseNet-B结构:BN+ReLU+1x1 Conv+BN+ReLU+3x3 Conv (3x3卷积搭配padding=1的方式可保证特征图大小维持不变)
增加了1x1的卷积的Dense Block也称为Bottleneck结构
- 每一个Bottleneck输出的特征通道数是相同的,经过concat操作后的通道数是按K的增长量增加的
- 这里1×1卷积的作用是固定输出通道数,达到降维的作用,1×1卷积输出的通道数通常是GrowthRate的4倍
- Dense Block采用了激活函数在前、卷积层在后的顺序,即BN-ReLU-Conv的顺序,这种方式也被称为pre-activation
DenseNet优缺点
优点:
-
更强的梯度流动
- 每一层都建立起了与前面层的连接,误差信号可以很容易地传播到较早的层,所以较早的层可以从最终分类层获得直接监管
-
减少参数总量
-
保存了低维度的特征
- 在标准的卷积网络中,最终输出只会利用提取最高层次的特征
- 在DenseNet中,它使用了不同层次的特征,倾向于给出更平滑的决策边界。这也解释了为什么训练数据不足时DenseNet表现依旧良好
缺点
- 由于需要进行多次Concatnate操作,数据需要被复制多次,显存容易增加得很快,需要一定的显存优化技术
- DenseNet是一种更为特殊的网络,ResNet则相对一般化一些,因此ResNet的应用范围更广泛
代码实现
import torch
from torch import nn, optim
import torchvision
import sys
from time import time
import torch.nn.functional as F
'''实现DenseBlock的基本结构:批量归一化、激活和卷积'''
def conv_block(in_channels, out_channels):
blk = nn.Sequential(
nn.BatchNorm2d(in_channels),
nn.ReLU(),
nn.Conv2d(in_channels, out_channels,kernel_size=3, padding=1)
)
return blk
'''实现DenseBlock,DenseBlock由多个 conv_block 组成,每个Block使用相同的输出通道数'''
class DenseBlock(nn.Module):
def __init__(self, num_convs, in_channels, out_channels):
super(DenseBlock, self).__init__()
net = []
for i in range(num_convs): #在前向计算时,将每块的输入和输出在通道维上连结
in_c = in_channels + i*out_channels #in_c指通道维
net.append(conv_block(in_c, out_channels))
self.net = nn.ModuleList(net)
self.out_channels = in_channels + num_convs*out_channels
def forward(self, X):
for blk in self.net:
Y = blk(X)
X = torch.cat((X, Y), dim=1)
return X
'''过渡层'''
def transition_block(in_channels, out_channels):
blk = nn.Sequential(
nn.BatchNorm2d(in_channels),
nn.ReLU(),
nn.Conv2d(in_channels, out_channels, kernel_size=1),
nn.AvgPool2d(kernel_size=2, stride=2)
)
return blk
'''DenseNet模型'''
class GlobalAvgPool2d(nn.Module):
# 全局平均池化层可通过将池化窗口形状设置成输入的高和宽实现
def __init__(self):
super(GlobalAvgPool2d, self).__init__()
def forward(self, x):
return F.avg_pool2d(x, kernel_size=x.size()[2:])
'''对 x 的形状转换 '''
class FlattenLayer(nn.Module):
def __init__(self):
super(FlattenLayer, self).__init__()
def forward(self, x):
return x.view(x.shape[0], -1)
'''使用同ResNet一样的单卷积层和最大池化层'''
net = nn.Sequential(
nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
)
'''使用的是4个稠密块,卷积层为4,卷积层通道数(即增长率)设为32,使用过渡层来减半高和宽,并减半通道数'''
num_channels, growth_rate = 64, 32
num_convs_in_dense_blocks = [4, 4, 4, 4]
for i, num_convs in enumerate(num_convs_in_dense_blocks):
DB = DenseBlock(num_convs, num_channels, growth_rate)
net.add_module('DenseBlock_%d' % i, DB)
num_channels = DB.out_channels # 上一个稠密块的输出通道数
if i != len(num_convs_in_dense_blocks)-1:
net.add_module('transition_block_%d' % i,
transition_block(num_channels, num_channels//2)) ## 在稠密块之间加入通道数减半的过渡层
num_channels = num_channels // 2
'''接上全局池化层和全连接层来输出'''
net.add_module('BN', nn.BatchNorm2d(num_channels))
net.add_module('relu', nn.ReLU())
net.add_module('global_avg_pool', GlobalAvgPool2d())
net.add_module('fc', nn.Sequential(FlattenLayer(),
nn.Linear(num_channels, 10)))
'''尝试打印每个子模块的输出维度确保网络无误'''
X = torch.rand((1, 1, 96, 96))
for name, layer in net.named_children():
X = layer(X)
print(name, ' output shape:\t', X.shape)
'''读取数据集'''
def load_data_fashion_mnist(batch_size, resize=None):
if sys.platform.startswith('win'):
num_workers = 0 # 0表示不用额外的进程来加速读取数据
else:
num_workers = 4
'''定义数据预处理的转换函数列表'''
trans = []
if resize: #判断是否需要进行图像尺寸调整(resize)
trans.append(torchvision.transforms.Resize(size=resize))
#将torchvision.transforms.Resize转换函数添加到转换函数列表trans中,并指定目标尺寸为resize
trans.append(torchvision.transforms.ToTensor())
# 将torchvision.transforms.ToTensor转换函数添加到转换函数列表trans中。这个函数用于将图像数据转换为张量,并且按照通道顺序排列(RGB)
transform = torchvision.transforms.Compose(trans)
#通过torchvision.transforms.Compose函数将转换函数列表trans组合成一个转换操作
mnist_train = torchvision.datasets.FashionMNIST(root='data/FashionMNIST',
train=True,
download=True,
transform=transform)
mnist_test = torchvision.datasets.FashionMNIST(root='data/FashionMNIST',
train=False,
download=True,
transform=transform)
train_iter = torch.utils.data.DataLoader(mnist_train,
batch_size=batch_size,
shuffle=True,
num_workers=num_workers)
test_iter = torch.utils.data.DataLoader(mnist_train,
batch_size=batch_size,
shuffle=False,
num_workers=num_workers)
return train_iter, test_iter
'''用于GPU的准确率评估函数'''
def evaluate_accuracy(data_iter, net, device=None):
if device is None and isinstance(net, torch.nn.Module):
device = list(net.parameters())[0].device #如果没指定device就使用net的device
acc_sum, n = 0.0, 0
for X, y in data_iter:
if isinstance(net, torch.nn.Module):
net.eval() # 评估模式, 这会关闭dropout
acc_sum += (net(X.to(device)).argmax(dim=1) == y.to(device)).float().sum().cpu().item()
net.train() # 改回训练模式
else:
if ('is_training' in net.__code__.co_varnames):
acc_sum += (net(X, is_training=False).argmax(dim=1) == y).float().sum().item()
else:
acc_sum += (net(X).argmax(dim=1) == y).float().sum().item()
n += y.shape[0]
return acc_sum / n
'''确保计算使用的数据和模型同在内存或显存上'''
def train_ch5(net, train_iter, test_iter, batch_size, optimizer , device, num_epochs):
# 将模型加载到指定运算器中
net = net.to(device)
print("training on ", device)
loss = torch.nn.CrossEntropyLoss()
for epoch in range(num_epochs):
# 在每一个迭代周期中,会使用训练集中所有样本一次(假设样本数能够被批量大小整除)
train_l_sum, train_acc_sum, n ,batch_count= 0.0, 0.0, 0,0
# 分别表示训练损失总和、训练准确度总和、样本数
start = time()
for X, y in train_iter:
X = X.to(device)
y = y.to(device)
'''前向传播'''
y_hat = net(X)
#由于变量 l 并不是一个标量,所以我们可以调用 .sum() 将其求和得到一个标量
'''计算损失'''
l = loss(y_hat, y).sum()
'''梯度清零'''
if optimizer is not None:
optimizer.zero_grad()
elif params is not None and params[0].grad is not None:
for param in params:
param.grad.data.zero_()
'''反向传播'''
l.backward() # 运行 l.backward() 得到该变量有关模型参数的梯度
if optimizer is None:
d2l.sgd(params, lr, batch_size)
else:
'''更新参数'''
optimizer.step()
'''计算精度'''
train_l_sum += l.cpu().item()
train_acc_sum += (y_hat.argmax(dim=1) == y).sum().cpu().item()
n += y.shape[0]
batch_count += 1
test_acc = evaluate_accuracy(test_iter, net)
print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f,\
time %.1f sec' %(epoch+1, train_l_sum/batch_count,
train_acc_sum/n, test_acc,
time()-start))
'''使用fashion_mnist来训练DenseNet模型'''
device = torch.device('cuda:1' if torch.cuda.is_available() else 'cpu')
batch_size = 256
train_iter, test_iter = load_data_fashion_mnist(batch_size,resize=96)
lr, num_epochs = 0.001, 5
optimizer = torch.optim.Adam(net.parameters(), lr=lr)
train_ch5(net, train_iter, test_iter, batch_size, optimizer,device, num_epochs)