DenseNet - 稠密神经网络
ResNet极大地改变了如何参数化深层网络中函数的观点。 稠密连接网络(DenseNet) [Huang et al., 2017]在某种程度上是ResNet的逻辑扩展。
类似于ResNet神经网络的核心公式: f ( x ) = g ( x ) + x f(x) = g(x) + x f(x)=g(x)+x 累加方法突出特征 ,DenseNet神经网络使用的方式则是拼接的方法(cat):
x → [ x , f 1 ( x ) , f 2 ( [ x , f 1 ( x ) ] ) , f 3 ( [ x , f 1 ( x ) , f 2 ( [ x , f 1 ( x ) ] ) ] ) , … ] . \mathbf{x} \to \left[ \mathbf{x}, f_1(\mathbf{x}), f_2([\mathbf{x}, f_1(\mathbf{x})]), f_3([\mathbf{x}, f_1(\mathbf{x}), f_2([\mathbf{x}, f_1(\mathbf{x})])]), \ldots\right]. x→[x,f1(x),f2([x,f1(x)]),f3([x,f1(x),f2([x,f1(x)])]),…].
它们的关系如下图:
最后,将这些展开式结合到多层感知机中,再次减少特征的数量。
实现起来非常简单:我们不需要添加术语,而是将它们连接起来。 DenseNet这个名字由变量之间的 “稠密连接” 而得来,最后一层与之前的所有层紧密相连。 稠密连接如下图所示。
稠密网络主要由2部分构成:稠密块(dense block)和过渡层(transition layer)。 前者定义如何连接输入和输出,而后者则控制通道数量,使其不会太复杂。
稠密块体
引入依赖
import torch
from torch import nn
from d2l import torch as d2l
稠密块中的卷积层
DenseNet使用了ResNet改良版的“批量规范化、激活和卷积”架构。 我们首先实现一下这个架构。
#主要包含三个部分:批量规范化->ReLU激活函数->3*3卷积层,但不改变数据形状
def conv_clock(input_channels, num_channels):
return nn.Sequential(
nn.BatchNorm2d(input_channels), nn.ReLU(),
nn.Conv2d(input_channels, num_channels, kernel_size=3, padding=1))
稠密块
一个稠密块由多个卷积块组成,每个卷积块使用相同数量的输出通道。 然而,在前向传播中,我们将每个卷积块的输入和输出在通道维上连结。
class DenseBlock(nn.Module):
def __init__(self, num_convs, input_channels, num_channels):
super(DenseBlock, self).__init__()
layer = []
for i in range(num_convs):
layer.append(conv_clock(i * num_channels + input_channels,
num_channels))
self.net = nn.Sequential(*layer)
def forward(self, X):
for blk in self.net:
Y = blk(X)
#连接通道维度上每个块的输入和输出
X = torch.cat((X, Y), dim=1)
return X
卷积块的通道数控制了输出通道数相对于输入通道数的增长,因此也被称为增长率(growth rate)。
blk = DenseBlock(2, 3, 10)
X = torch.randn(4, 3, 8, 8)
Y = blk(X)
Y.shape
torch.Size([4, 23, 8, 8])
过渡层
由于每个稠密块都会带来通道数的增加,使用过多则会过于复杂化模型。 而过渡层可以用来控制模型复杂度。 它通过 1 × 1 1 \times 1 1×1 卷积层来减小通道数,并使用步幅为 2 的平均汇聚层减半高和宽,从而进一步降低模型复杂度。
def transition_block(input_channels, num_channels):
return nn.Sequential(
nn.BatchNorm2d(input_channels), nn.ReLU(),
nn.Conv2d(input_channels, num_channels, kernel_size=1),
nn.AvgPool2d(kernel_size=2, stride=2)) #执行平均池化层时,像素大小会减半。
对上一个例子中稠密块的输出使用通道数为10的过渡层。 此时输出的通道数减为10,高和宽均减半。
blk = transition_block(23, 10)
blk(Y).shape
torch.Size([4, 10, 4, 4])
DenseNet模型
我们来构造DenseNet模型。DenseNet首先使用同ResNet一样的单卷积层和最大汇聚层。
b1 = nn.Sequential(
nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
接下来,类似于ResNet使用的4个残差块,DenseNet使用的是4个稠密块。 与ResNet类似,我们可以设置每个稠密块使用多少个卷积层。 这里我们设成4,从而与ResNet-18保持一致。 稠密块里的卷积层通道数(即增长率)设为32,所以每个稠密块将增加128个通道。
在每个模块之间,ResNet通过步幅为2的残差块减小高和宽,DenseNet则使用过渡层来减半高和宽,并减半通道数。
# num_channels 为当前的通道数
num_channels, growth_rate = 64, 32
num_convs_in_dense_block = [4, 4, 4, 4]
blks = []
for i, num_convs in enumerate(num_convs_in_dense_block):
blks.append(DenseBlock(num_convs, num_channels, growth_rate))
#上一个稠密块的输出通道数
num_channels += num_convs * growth_rate
#在稠密块之间添加一个转换层, 使通道数减半
if i != len(num_convs_in_dense_block) - 1:
blks.append(transition_block(num_channels, num_channels // 2))
num_channels = num_channels // 2
定义模型
net = nn.Sequential(
b1, *blks, nn.BatchNorm2d(num_channels), nn.ReLU(),
nn.AdaptiveAvgPool2d((1,1)), nn.Flatten(),
nn.Linear(num_channels, 10))
测试模型的输出形状
X = torch.rand((1, 1, 96, 96))
for layer in net:
X = layer(X)
print(layer.__class__.__name__, 'output shape:\t', X.shape)
Sequential output shape: torch.Size([1, 64, 24, 24])
DenseBlock output shape: torch.Size([1, 192, 24, 24])
Sequential output shape: torch.Size([1, 96, 12, 12])
DenseBlock output shape: torch.Size([1, 224, 12, 12])
Sequential output shape: torch.Size([1, 112, 6, 6])
DenseBlock output shape: torch.Size([1, 240, 6, 6])
Sequential output shape: torch.Size([1, 120, 3, 3])
DenseBlock output shape: torch.Size([1, 248, 3, 3])
BatchNorm2d output shape: torch.Size([1, 248, 3, 3])
ReLU output shape: torch.Size([1, 248, 3, 3])
AdaptiveAvgPool2d output shape: torch.Size([1, 248, 1, 1])
Flatten output shape: torch.Size([1, 248])
Linear output shape: torch.Size([1, 10])
训练模型
lr, num_epochs, batch_size = 0.1, 10, 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
可以看到,DenseNet神经网络在Fashion-MNIST数据集上迭代10次时较不稳定,训练集准确度为0.948, 测试集准确度为0.765。
迭代次数为20次的训练结果,如下
可见,训练集准确度为0.978,测试集准确度为0.907。
小结
1.在跨层连接上,不同于ResNet中将输入与输出相加,稠密连接网络(DenseNet)在通道维上连结输入与输出。
2.DenseNet的主要构建模块是稠密块和过渡层。
3.在构建DenseNet时,我们需要通过添加过渡层来控制网络的维数,从而再次减少通道的数量。