机器学习之预测股票价格模型---学习笔记(获取历史行情数据、数据归一化、正则化处理)

本文是关于使用机器学习预测股票价格的学习笔记,首先介绍了如何获取历史行情数据,接着详细阐述了数据的归一化和正则化处理过程,以提升模型的预测性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、获取历史行情数据

import tushare as ts
df=ts.get_hist_data('600999',start='2016-06-15',end='2018-03-07')
dd=df[['open','high','low','close']]
df 

可以得到如下结果:


二、数据归一化处理

    data_all = np.array(df).astype(float)
    scaler = MinMaxScaler()
    data_all = scaler.fit_transform(data_all)
scaler

MinMaxScaler(copy=True, feature_range=(0, 1))


scaler = MinMaxScaler(copy=True,feature_range=(-1,1))
scaler.fit_transform([1,2,3,4,5,6,7])
array([-1.        , -0.666666
股票价格预测是一个具有挑战性的机器学习问题,因为股票市场受到许多复杂因素的影响。以下是一些常见的机器学习方法,可以用于股票价格预测: 1. 线性回归(Linear Regression):线性回归是一种基本的预测方法,它尝试建立一个线性模型来拟合股票价格与相关变量之间的关系。这种方法适用于简单的价格趋势预测。 2. 支持向量回归(Support Vector Regression, SVR):SVR是一种非线性回归方法,通过在高维空间中构建支持向量机来拟合数据。它可以处理非线性关系,并且在处理具有复杂模式的数据时表现良好。 3. 随机森林(Random Forest):随机森林是一种集成学习方法,通过组合多个决策树来进行预测。它可以处理特征之间的非线性关系,并且对于处理大量数据和高维数据集很有效。 4. 长短期记忆网络(Long Short-Term Memory, LSTM):LSTM是一种递归神经网络(RNN),在处理时间序列数据时表现出色。它可以捕捉到股票价格的时间依赖性和长期趋势。 5. 卷积神经网络(Convolutional Neural Network, CNN):CNN主要用于图像处理,但也可以用于股票价格预测。可以将股票价格数据转换为图像矩阵,然后使用CNN进行特征提取和预测。 需要注意的是,股票市场受到各种复杂因素的影响,包括经济指标、政治事件、公司业绩等。因此,在进行股票价格预测时,单独使用机器学习方法可能无法获得准确的结果。综合考虑基本面分析和技术分析等方法可能更能提高预测的准确性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值