针对相同场景,不同相机条件,不同环境参数条件下,灰度图像所具有的灰度特征有所不同,对于后续特征识别,特征标定,图像特质分析等后处理均产生了不小的麻烦。在进行图像灰度一致性校正过程中,我通过多种方法的识别测试,最终测试后有以下结果。
整体灰度图像的一致性校正过程,转化为数学模型(本人数学基础较差,多有误错请谅解并指出)。即如何找到两幅图像中对应相同特征的不同灰度值,即在已知定义域和值域条件下,利用图像中的特征取寻找适当的函数关系。
首先本人在研究之初,采用最为简单的,通过灰度直方图,进行灰度出现频率的排序过程,在同样的拍摄内容中,相同特征在图像中的灰度值可能不同,但出现的频率大致相同,通过逐步对各个灰度的出现频率进行分析研究,可得到多幅图像间对应的灰度内容,并通过回归、拟合等方法最终实现图像的一致性校正过程。
但随着该方法的实际适用,发现仅考虑的图像的灰度变化情况还掺杂着对比度变化,增益变化,噪声变化等等诸多因素。故而该方法适用性较低。并且由于一幅图像中,多数灰度出现频率吧并不会很集中,并且多个灰度出现频率会类似,甚至相同。如下图所示:
如上,该两幅图具有完全相同的灰度内容(实际图像并未展示),仅在不同环境下成像过程,导致其对比度分布,增益分布,图像均衡等方面均有所不同,但在灰度直方图分配过程中,整体曲线分布存在差异,无法仅仅通过灰度频率分布实现图像内容的对应识别。同时在图中也可以发现,内容中灰度出现频率最高的灰度值,往往在不同条件下,其灰度频率始终维持在一个较高的位置。故而该方法具有一定的参考性。即可以通过最高频率灰度大致确定最大的特征在图像中的灰度分布情况。
那么在实际求取特征过程中,随着我对灰度特征内容定位所带入了数学模型越复杂,在不考量计算效率的条件下,图像间的变化关系越来越精确具体。但最精确地,图像间的一致性校正理论&