如何在通达信公式指标里嵌入 DeepSeek

好的,我现在要解决的问题是如何在通达信公式指标中嵌入DeepSeek。首先,我需要了解通达信公式指标是什么,以及DeepSeek的功能是什么。

通达信是一款常用的股票分析软件,支持用户自定义公式指标(Technical Analysis Indicators),用于股票的技术分析。用户可以通过编写特定的公式来生成各种技术指标,如移动平均线(MA)、相对强弱指数(RSI)等。这些公式通常基于股票的价格、成交量等数据进行计算。

DeepSeek可能是一个AI模型或数据处理工具,可能用于数据分析、预测或生成交易信号。嵌入DeepSeek到通达信公式指标中,可能是希望利用其强大的数据处理和预测能力,来增强现有的技术分析指标,或者生成新的交易信号。

接下来,我需要考虑如何在通达信的自定义公式中集成外部AI模型。通达信的自定义公式语言(TDX Formula Language)主要是基于数学运算和逻辑判断,不支持直接调用外部程序或API。因此,直接嵌入DeepSeek可能存在技术障碍。

可能的解决方案包括:

1. **数据导出与再导入**:将通达信中的数据导出到外部程序(如Python),使用DeepSeek处理后再将结果导入回通达信。这种方法需要手动操作,实

### 通达信DeepSeek API接入方法 为了实现通达信DeepSeek之间的深度整合,主要涉及以下几个方面的工作: #### 1. 准备工作 确保已经安装并配置好了通达信环境以及获得了DeepSeek API访问权限。通常情况下,这涉及到注册账号、申请API密钥等操作[^4]。 #### 2. 登录认证 使用通达信提供的API完成登录过程。此过程中可能需要用到用户名密码或者其他形式的身份验证机制。一旦成功登录,则可以获得用于后续请求所需的token或其他鉴权信息[^1]。 ```python import requests def login(username, password): url = "https://example.com/api/login" payload = { 'username': username, 'password': password } response = requests.post(url, json=payload) if response.status_code == 200: return response.json()['token'] else: raise Exception('Login failed') ``` #### 3. 获取市场数据 通过调用通达信API接口获取最新的市场行情数据,并将其转换成适合DeepSeek处理的数据格式。这需要注意不同平台间可能存在的时间戳差异等问题。 ```python def fetch_market_data(token): headers = {'Authorization': f'Bearer {token}'} market_url = "https://example.com/api/marketdata" response = requests.get(market_url, headers=headers) if response.status_code == 200: data = response.json() # Convert timestamp format to match DeepSeek requirements for item in data['items']: item['time'] = convert_timestamp(item['time']) return data else: raise Exception('Failed to get market data') ``` #### 4. 数据传输至DeepSeek 将经过预处理后的市场数据发送给DeepSeek服务器端口。此时应该遵循对方规定的通信协议(如RESTful API),并且考虑到网络延迟等因素的影响,在必要时加入重试逻辑以提高可靠性[^2]。 ```python from retrying import retry @retry(stop_max_attempt_number=3) def send_to_deepseek(data): deepseek_api_endpoint = "http://deepseek.example.com/data" result = requests.put(deepseek_api_endpoint, json=data) if not result.ok: raise IOError(f"Error sending data: {result.text}") ``` #### 5. 实现自动化交易策略 基于接收到的实时行情信息制定相应的买卖决策算法,并借助通达信API执行具体的下单指令。在此基础上还可以进一步优化模型参数,提升预测准确性。 ```python def execute_trade_strategy(strategy_function, token): while True: try: latest_data = fetch_market_data(token) decision = strategy_function(latest_data) place_order(decision, token) except KeyboardInterrupt: break finally: time.sleep(60) # Wait one minute before next iteration ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

风口猪炒股指标

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值