压缩感知的一些理解

原创 2018年04月17日 21:01:55

因为学习分布式视频编码,其中发展趋势有一个方向即是与压缩感知相结合,所以对压缩感知进行了学习,对其稍作了解,将其记录下来,以方便后面学习了解。

首先何为压缩感知?用远低于奈奎斯特采样频率的采样频率来采样信号,可以成功重建信号。

假设需要重构的信号X N*1,稀疏系数为K,即X N*1 中非零常数为K,远远小于N,采样信号y M*1,由测量系数矩阵ΦM× N获得M/N<<1为采样率,即采样信号远远少于源信号。

y M*1  =ΦM× N * X N*1

通常,稀疏系数K比采样M还要小,K<M<<N。

原信号X N*1 不是稀疏的,但是大部分通过稀疏基数进行压缩,因此重构信号可以通过稀疏基数进行表示

X N*1  = ΨN*N * θN*1

其中, θN*1 是 N*1信号的K系数稀疏表示, ΨN*N 系数已知,对于求解X N*1  的问题可以转换为求θN*1,

y M*1  =ΦM× N * X N*1 =ΦM× NΨN*N θN*1 =AM*N*θN*1

由公式可以看出,压缩感知的重建通过基于测量信号的传输系数而得出



由图可以看出,需要求解的 θN*1 比较简单且数据量很小






压缩感知常用基础数学概念

支撑集:定义信号向量中非零值的位置序号的集合为信号的支撑集,用supp()表示。例如,向量a={3,0,0,0,2,0,5,0,0}  则supp(a)={1,5,7}...
  • yuxiaoxi21
  • yuxiaoxi21
  • 2017-03-03 19:22:43
  • 302

贝叶斯压缩感知学习

  • 2015年01月15日 20:51
  • 244KB
  • 下载

压缩感知(compressed sensing)的通俗解释

在我看来,压缩感知是信号处理领域进入21世纪以来取得的最耀眼的成果之一,并在磁共振成像、图像处理等领域取得了有效应用。压缩感知理论在其复杂的数学表述背后蕴含着非常精妙的思想。基于一个有想象力的思路,辅...
  • yq_forever
  • yq_forever
  • 2017-02-16 21:01:51
  • 5035

压缩感知理论的理解

压缩感知的数学模型理解
  • LXJ0906
  • LXJ0906
  • 2015-04-18 16:36:16
  • 861

初识贝叶斯压缩感知

一、贝叶斯理论:1. 先验信息:在抽样前有关统计推断的一些信息,贝叶斯公式数学表达为: P(A|B)=P(A,B)P(B)(公式1)P(A|B)= \frac{P(A ,B)}{P(B)...
  • hjxzb
  • hjxzb
  • 2015-04-07 15:56:06
  • 3967

压缩感知重构算法之Gradient Descent with Sparsification(GraDeS)

本篇介绍压缩感知重构算法GraDes(GradientDescent with Sparsification),该算法是在文献【GargR, Khandekar R. Gradient descent...
  • jbb0523
  • jbb0523
  • 2016-07-28 21:51:31
  • 3972

机器学习学习笔记—正则化的理解

这几天在学习李航的统计学习方法,来谈谈我对于机器学习中正则化的理解:什么是正则化如何理解正则化正则化的作用第一个问题,什么是正则化?正则化就是在损失函数后加上一个正则化项(惩罚项),其实就是常说的结构...
  • m0_37952909
  • m0_37952909
  • 2018-03-25 17:15:03
  • 131

压缩感知理论+一个经典的算法

压缩感知    一、压缩感知理论:    压缩感知理论指出, 只要信号是可压缩的或在某个变换域是稀疏的, 那么就可以用一个与变换基不相关的观测矩阵将变换所得高维信号投影到一个低维空间上, 然后通过...
  • baidu_33448784
  • baidu_33448784
  • 2015-12-23 20:43:26
  • 7459

采样、过采样和压缩感知

链接:https://www.zhihu.com/question/20475750/answer/15249347,http://tiejunlab.com/viewthread.php?actio...
  • YiQianMingYang
  • YiQianMingYang
  • 2016-06-14 11:23:08
  • 1240

稀疏表示与压缩感知

最近在看机器学习时,看到一章关于稀疏学习的,之前有了解过稀疏表示与压缩感知,但是两者之间的差异并不是很清楚,今天就总结一下吧 稀疏表示  稀疏域模型(Sparse-Land Model)即信号的稀...
  • Losteng
  • Losteng
  • 2016-04-07 15:21:54
  • 3475
收藏助手
不良信息举报
您举报文章:压缩感知的一些理解
举报原因:
原因补充:

(最多只允许输入30个字)