17.半拗(小拗)可救可不救

序:为了用Python实现诗词格律的分析,我研究了一段时间的诗律和词律,现做整理分享给大家,以供需实现此类需求的朋友“快速”、完整地理解格律。

目录

17.半拗(小拗)可救可不救

所谓半拗可救可不救,指的是出句平仄脚句型,即五言“仄仄平平仄”和七言“平平仄仄平平仄”,五言第三字、七言第五字拗用仄,这就是半拗(小拗),可以救也可以不救。

如果要救的话,就是在对句的五言第三字、七言第五字用一个平声字作为补偿。但是,在这种情况下,诗人也往往都在这个地方用救。

此地一为别,孤蓬万里征。(“别”是入声)——《送友人》李白

第15点,第16点的本句自救、对句相救往往是同时并用的。

  • 半拗是因为一三五不论么?

本质原因应该是因为这里第三字用仄声对音律的影响不大;简单理解的话可以理解为对于第三字的格律要求没有二四字那么高。

  • 第一、二句出现小拗,然后三四句三、五字用平就能补救是吗?

不是。是第一句出现拗,如果是对句救就是第二句救;每一联如果不考虑黏,和上下联在平仄上是无关的。

  • 若三四字都用仄,是不是只补对句第三个字?

如果三四字都用仄,而且是出句的话,应该是三仄结尾,那么既可能是仄仄脚变格,直接补本句第一字为平即可;但是也有可能是平仄脚变格,需要补对句五言第三字、七言第五字。

  • 上联的,一句有拗,下句就要补是这个意思不?

这个是要看情况的,如果是犯了孤平,那么就要本句拗句,不用对句救;如果要是半拗,那么对句可救可不救;只有是大拗,才需要对句一定来救。

  • 仄仄脚变格的对句有特例吗?

仄仄脚有几种变格;但是无论是对于第三字用仄音的变格,还是第三、第四字平仄调换的变格,只要第一字使用平音即可,对对句没有救的要求。

【名词解释032】半拗——也称小拗,是平仄脚句型中五言第三字、七言第五字的拗,可救可不救。后统称为半拗

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

长行

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值