ssd深度学习pytorch环境配置gpu+windows11+anaconda+pycharm+RTX3050 笔记,包括如何在anconda创建ssd虚拟环境和用pycham为项目配置ssd虚拟环境
前言
windows11下anaconda+pycharm的安装我是看这个链接,不多赘述 (18条消息) win10+pycharm+anaconda开发环境搭建_机器视觉全栈er的博客-CSDN博客
安装最新版本显卡驱动 -https://www.nvidia.cn/Download/index.aspx?lang=cn2. 打开anaconda命令窗口,输入 nvidia-smi 来确定 cuda driver的版本。这一部分建议看小土堆的B站教程p23-2623. GPU版本-GPU与CUDA准备工作_哔哩哔哩_bilibili。本人是12.0,使用的是cu117版本的pytorch。

ssd链接https://github.com/lufficc/SSD,环境要求如下

pycharm汉化Pycharm汉化简单图文教程
anconda虚拟环境创建
创建: conda create -n ssd python=3.8 (如果不行,就自己删掉-n重新手打)

输入y ,然后按enter

激活: conda activate ssd

安装pytorch: conda install pytorch torchvision torchaudio pytorch-cuda=11.7 -c pytorch -c nvidia (确定你的CudaVersion>=11.7)。否则选择其他版本,代码在pytorch官网上找PyTorch,要求代码的cuda版本=<你电脑的cudaVersion,具体参考前言2。
安装opencv-python,直接安装容易出错,建议按这个方法:
版本最好小于4.5.5,注意python=3.X,要后缀为-cp3X-cp3X-win_amd64.whl 。在Links for opencv-python (tsinghua.edu.cn)下载,Ctrl+f找自己需要的版本,然后pip install C:/(你的文件路径)/opencv_python-4.5.4.58-cp38-cp38-win_amd64.whl
https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/96/32/748a4b7d82ffac939031d877198e13f579930c8819d0357d28c1821d11b5/opencv_python-4.5.4.58-cp38-cp38-win_amd64.whl#sha256=085c5fcf5a6479c34aca3fd0f59055e704083d6a44009d6583c675ff1a5a0625 点这个直接下载opencv_python-4.5.4.58-cp38-cp38-win_amd64.whl

pip install vizer==0.1.5
pip install yacs
pip install tqdm
pip install tensorboardX (requestment中没有要求但是运行的时候要求会安装)

再输入conda list 可以看目前虚拟环境所有的安装包
用pycham为项目配置ssd虚拟环境
解压ssd文件,并用pycham打开该项目
pycham用为项目配置ssd虚拟环境
取消自动创建,配置我们刚刚创建的环境

点击设置



选择刚刚配置的ssd虚拟环境的python.exe文件,一般在(anaconda安装路径)/anaconda/envs/ssd内

最后一路点确定
pycharm打开终端,如果你成功选择了相应的虚拟环境,()内就会显示你的虚拟环境名称

项目环境配置完成
关于linux上ssd环境配置及训练过程,可以参考:
(linux)ssd深度学习1:pytorch环境配置gpu+anaconda+pycharm+RTX2080ti 笔记_chao_xy的博客-CSDN博客
(linux) ssd-pytorch深度学习2: 训练自己的数据集, gpu+anaconda+pycharm+RTX2080ti 笔记_chao_xy的博客-CSDN博客