https://leetcode.com/problems/add-and-search-word-data-structure-design/description/
Leetcode的题目排列一直都有一定的规律,它们会尽量把同样类别的题目排在一起,208 是一道trie tree的基本实现。因为我自己已经写过很多次了。所以我暂时也没有写相关的攻略。Trie tree又叫prefix tree(前置树),是某些情况下作为String dictionary的很好的数据结构。相比HashSet主要的优点在于它可以在字符串匹配中间就可以断开,而不需要完整匹配整个单词。在另一题 Word Search II 里面我们就会看到可以这样做的巨大优势。但是正常来说它的空间会比HashSet作为字典来的要浪费,因为它可能会产生非常多的指数级别的空指针,但是还是看具体怎么实现的,理论上这种空指针的空间浪费是可以避免的。TrieTree的数据结构非常简单,如下
class TrieNode {
boolean isWord;
TrieNode[] children;
public TrieNode() {
isWord = false;
children = new TrieNode[26];
}
}
class TrieTree {
TrieNode root;
public TrieTree() {
root = new TrieNode();
}
}
=====华丽的分割线=====(这编辑器有问题,不分割文字会跳到代码块里,我勒个去)
TrieTree有他的基本功能就是加单词和查单词,具体可以看这一题:https://leetcode.com/problems/implement-trie-prefix-tree/description/
这一题就是在上面的基本功能里加了一个简化的regular expression,就是一个把星号去掉的regular expression,只有点号这个特别字符,瞬间就简单了,不然这一题一定是very very hard而不只是medium....
其实这一题就是一个再正常不过的bfs,也就是要用到queue。
正常的trie tree search word只需要一个for loop沿着一个个精确的子节点往下走,或者走到单词或者走到某个子节点被中断。这一题的点号把这个过程变成了bfs,遇到精确的某个子节点我们就放进去queue,这个等同于正常的search word, 遇到点号我们就把当前节点对应的所有有效子节点全部放进去queue。然后和别的bfs题目差不多,维护好当前层的size,在适当的时候(当前层的节点走完)走到下一层(往下一个字符进行匹配)。当走到最后一层(匹配最后一个字符)的时候我们不再把任何子节点放进queue里,而是开始判断最后一层的子节点是否存在isWord的节点,是就返回true。如果走完最后一层节点都没有一个isWord就表示匹配失败了。下面给出代码
class TrieNode {
boolean isWord;
TrieNode[] children;
public TrieNode() {
isWord = false;
children = new TrieNode[26];
}
}
class TrieTree {
TrieNode root;
public TrieTree() {
root = new TrieNode();
}
public void addWord(String word) {
TrieNode travel = root;
for (int i = 0; i < word.length(); i++) {
int index = word.charAt(i) - 'a';
if (travel.children[index] == null) {
travel.children[index] = new TrieNode();
}
travel = travel.children[index];
}
travel.isWord = true;
}
public boolean searchWordWithDot(String word) {
if (word.length() == 0) return true;
Queue<TrieNode> queue = new LinkedList<TrieNode>();
queue.add(root);
int curIndex = 0;
char c = word.charAt(0);
int size = 1;
while (!queue.isEmpty() && curIndex <= word.length()) {
TrieNode curNode = queue.poll();
if (curIndex == word.length()) {
if (curNode.isWord) return true;
} else {
if (c == '.') {
for (int i = 0; i < 26; i++) {
if (curNode.children[i] != null) {
queue.add(curNode.children[i]);
}
}
} else {
int index = c - 'a';
if (curNode.children[index] != null) {
queue.add(curNode.children[index]);
}
}
size--;
if (size == 0) {
size = queue.size();
curIndex++;
if(curIndex < word.length()) c = word.charAt(curIndex);
}
}
}
return false;
}
}
TrieTree dict;
/** Initialize your data structure here. */
public WordDictionary() {
dict = new TrieTree();
}
/** Adds a word into the data structure. */
public void addWord(String word) {
dict.addWord(word);
}
/** Returns if the word is in the data structure. A word could contain the dot character '.' to represent any one letter. */
public boolean search(String word) {
return dict.searchWordWithDot(word);
}