Find the total area covered by two rectilinear rectangles in a 2D plane.
Each rectangle is defined by its bottom left corner and top right corner as shown in the figure.
这一题解法最直观简单的描述就是两个长方形的面积和减去它们的交集面积。所以关键点在于判断是否有交集和如何求出交集面积的大小。
在二维坐标轴里,一个矩形可以通过四个值来表示,x1, x2, y1, y2。其中x1 < x2, y1 < y2。结合上图表示,x1就是A,也可以表示为x = -3这条垂直于x轴的直线,x2就是C,y1 是 B,也可以理解为y = 0这条垂直于y轴的直线,y2是D。
那么假定两个矩形的四个值分别是x1, x2, y1, y2, x1', x2', y1', y2'。它们相交的条件如下
取x1'' = Math.max(x1, x1'),x2'' = Math.min(x2, x2'), y1'' = Math.max(y1, y1'),y2'' = Math.min(y2, y2')
这四个点依旧能够是满足跟x1, x2以及y1, y2一样的形成矩形的条件。也就是x1'' < x2'', y1'' < y2''。然后这四个点就是交集矩形的表达。
基于以上原理,我们可以得到代码如下:
public int computeArea(int A, int B, int C, int D, int E, int F, int G, int H) {
long left = (long)Math.max(A, E);
long right = (long)Math.min(C, G);
long top = (long)Math.min(D, H);
long bot = (long)Math.max(B, F);
long overlayed = 0;
if (right > left && top > bot) overlayed = (right - left) * (top - bot);
return (int)(((long)D - (long)B) * ((long)C -(long)A) + ((long)H - (long)F) * ((long)G - (long)E) - overlayed);
}
算法复杂度一眼就看出来是O(1),也看不出来这题是medium的理由。用了一大堆类型转换的原因在于直接用int在test case里会爆表。钦此。。