需要用到的一些知识:
在被k除的情况下:
1。如果x和y同余,那么mx和my同余。
2。如果x和y同余、m和n同余,那么x+m和y+n同余。
3。如果a的余数为j,令a=ik+j。
则a^2=(ik)^2+2ijk+j^2.可见a^2和j^2同余。
由二项式定理可推知:a^n和j^n同余。
----------------------------------------------------
对于k,设g为10的余数(除k)。
因为abcdef=a*10^5+b*10^4+c*10^3+d*10^2+e*10+f.
由上面的1、2、3三个知识点可以推得:
abcdef和a*g^5+b*g^4+c*g^3+d*g^2+e*g+f 同余!
----------------------------------------------------
当k取2或5时,余数g为0.
此时abcdef与f同余。
所以只须看f能否被2或5整除,
即可判断abcdef能否被整除。
----------------------------------------------------
当k取3或9时,余数g为1.
此时abcdef与a+b+c+d+e+f同余。
所以只须看各位数之和能否被3或9整除。
即可判断abcdef能否被整除。
----------------------------------------------------
当k取4或8时,余数g为2.
此时abcdef与a*2^5+b*2^4+c*2^3+d*2^2+e*2+f同余。
k取4时,除后两项外的前面所有项都可被4整除。
所以只须看e*2+f能否被4整除即可。
k取8时,除后三项外的前面所有项都可被8整除。
所以只须看d*2^2+e*2+f能否被8整除即可。
注:其实看ef能否被4整除、def能否被8整除。
就可以判断。判断原理很简单,此处就不表了。
----------------------------------------------------
当k取6时,余数g为4.
此时abcdef与a*4^5+b*4^4+c*4^3+d*4^2+e*4+f同余。
不好判断。其实判断能否被6整除有简单的办法:
只须看该数是否同时可被2和3整除即可。
----------------------------------------------------
当k取7时,余数g为3.
此时abcdef与a*3^5+b*3^4+c*3^3+d*3^2+e*3+f同余。
这个式子算起来很麻烦,所以不好判断。
不过借助这种找同余数的思想,可以找到如下一个判断方法:
对于一个数x,从倒数第二位开始,往左开始循环,每位依次乘以
3,2,6,4,5,1. 比如倒数第二位乘的是3,那么倒数第三位就乘以2,
如此循环完成后,把各个乘积相加,再加上倒数第一位。得到的和将与x同余。
也就是说,判断这个和能否被7整除,即可。
注:3,2,6,4,5,1.是相应位量级的余数。
----------------------------------------------------
2009年12月9日晚,突然想到这些东西,我以为可以借此找到一种轻便的判断
是否被7整除的方法,可惜,仔细一算就发现不行。不过这个思路还是很有用,
通过它可以得到判断被3和9整除的方法。