常见的目标检测bbox标注格式

Pascal VOC
bbox:[x_min, y_min, x_max, y_max]
格式:左上右下

COCO
bbox:[x_min, ymin, width, height]
格式:左上宽高

YOLO
bbox [x_center, y_center, width, height]
并进行数据规范化(normalized)
格式:中心坐标,宽高

YOLO转COCO

def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0):
    y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
    y[:, 0] = w * (x[:, 0] - x[:, 2] / 2) + padw  # top left x
    y[:, 1] = h * (x[:, 1] - x[:, 3] / 2) + padh  # top left y
    y[:, 2] = w * (x[:, 0] + x[:, 2] / 2) + padw  # bottom right x
    y[:, 3] = h * (x[:, 1] + x[:, 3] / 2) + padh  # bottom right y
    return y

COCO 转 YOLO

 def convert_box(size, box):
        # Convert COCO box to YOLO xywh box
        dw = 1. / size[0]
        dh = 1. / size[1]

        return (box[0] + box[2] / 2) * dw, (box[1] + box[3] / 2) * dh, box[2] * dw, box[3] * dh

Pasic VOC 转 YOLO

def convert_box(size, box):
        # Convert VOC box to YOLO xywh box
        dw = 1. / size[0]
        dh = 1. / size[1]

        return ((box[0] + box[1]) / 2.0 * dw, (box[2] + box[3]) / 2.0 * dh , (box[1] - box[0]) * dw, (box[3] - box[2]) * * dh)
### 3D目标检测中的数据标注方法 对于3D目标检测而言,高质量的数据集至关重要。为了构建有效的训练模型,精确的标注必不可少。常见的3D目标检测数据标注主要涉及以下几个方面: #### 标注类型的选择 在进行3D目标检测时,通常会采用边界框(Bounding Box)的方式来进行物体位置的定义。具体来说,可以分为2D图像上的矩形框以及3D空间内的立方体框两种形式。前者适用于基于摄像头获取的信息;后者则更多依赖激光雷达(LiDAR)所捕捉到的空间坐标点云数据[^1]。 #### 使用专业软件完成标注工作 针对不同传感器采集来的原始资料,存在多种专门用于处理并实施人工或半自动化标注过程的应用程序。例如,在处理LiDAR点云文件时,可借助如LabelFusion这样的开源平台来辅助操作者高效地标记各类障碍物的位置及其属性特征。此外,一些商业解决方案也提供了更为丰富的功能选项和支持服务[^2]。 #### 实际操作流程概述 当进入具体的标注环节之后,工作人员需按照既定标准依次选取待识别对象,并通过鼠标拖拽或其他交互手段划定相应的几何形状作为其代表区域。与此同时,还需录入额外的相关参数描述,比如类别名称、尺寸大小等信息。部分高级工具还允许设置遮挡情况下的特殊标志位以便后续算法更好地理解复杂场景结构[^3]。 ```python # Python伪代码展示如何保存一个简单的3D Bounding Box标签至JSON文件 import json def save_3d_bbox_to_json(file_path, bbox_list): with open(file_path, 'w') as f: json.dump({"bboxes": bbox_list}, f) bbox_example = [ {"position": [0.5, 1.2, -0.8], "dimensions":[1.5, 3.4, 1.6], "class":"car"}, ] save_3d_bbox_to_json('annotations.json', bbox_example) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值