Python数据分析学习系列一——Numpy入门学习

  • Numpy是高性能科学计算和数据分析的基础包。它是Pandas等其他各种工具的基础。
  • Numpy的主要功能:
    • ndarray,一个多维数组结构,高效且节省空间
    • 无需循环对整租数据进行快速运算的数学函数
    • 线性代数、随机数生成和傅里叶变换功能
  • 安装方法:pip install numpy
  • 引用方式:import numpy as np
import numpy as np

1 为什么用numpy?

  • 已知若干家跨国公式市值,要转换成人民币。
  • 已知购物车中没见商品的价格与商品件数,求总金额。
import random
a = [random.uniform(100.0, 200.0) for i in range(50)] #假设已知50家公司市值
x = 6.8 #1美元=6.8元人民币
# 转换成人民币,列表——循环
b = []
for each in a:
    b.append(each*x)
# 转换成人民币,数组——“*”
a = np.array(a)
a*x
array([ 971.54836946, 1230.25801894, 1009.93695086,  778.07069875,
       1347.34192239,  830.85694411,  992.91816716,  968.82463502,
        790.61843367,  750.04659306,  995.04823811,  940.83119352,
        872.12366111, 1126.5645099 , 1015.98732282, 1286.79370318,
        948.98123827, 1101.00354637,  749.46386142, 1343.44109031,
       1183.17936556, 1235.68030649,  981.63529056, 1231.32330003,
        963.56396015,  923.67919752, 1053.00562042, 1341.81973736,
       1155.96713625,  873.60675873,  939.44328417,  700.71536278,
       1123.45339544,  938.23929525,  971.43311266, 1207.33747815,
       1318.36436382, 1159.48810275,  959.64425333,  733.97983522,
        765.57555447,  826.24023719, 1254.31439198, 1050.46916221,
       1103.59573233,  707.05767038,  698.0050053 , 1068.71018975,
       1261.34352252,  832.40313494])
a = [random.uniform(10.0,20.0) for i in range(50)]
b = [random.randint(1,10) for i in range(50)]
a = np.array(a) #s转换成数组
b = np.array(b)
(a * b).sum()# a×b并求和
3676.0083431293015

2 Numpy基础

2.1 创建ndarray:np.arrray(array_like)

  • 数组与列表的区别:
    • 数组对象内的元素类型必须相同
    • 数组大小不可改变
np.array([1,2,3,4,5])
array([1, 2, 3, 4, 5])
a = np.array(range(10))
a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
np.array(range(10), dtype='float')
array([0., 1., 2., 3., 4., 5., 6., 7., 8., 9.])

2.2 ndarray-数据类型

  • 布尔型:bool_
  • 整型:int_ int8 int16 int32 int54
  • 无符号整数:uint8 uint16 uint32 uint54
  • 浮点型:float_ float16 float32 float64
  • 复数型:complex_ complex64 complex128
a = np.array(range(10))
a.dtype# 返回数据类型
dtype('int32')

2.3 ndarray-常用属性

  • T 数组的转置(一维数组不能转置)
  • size 数组元素的个数
  • ndim 数组的维数
  • shape 数组的维度大小(返回元组形式)
  • dtype 数组元素的数据类型
a.size# 返回元素个数
10
a = np.array([[1,2,3],[4,5,6]])
a
array([[1, 2, 3],
       [4, 5, 6]])
a.size
6
a.shape
(2, 3)
a = np.array([[[1,2,3],[4,5,6]],[[1,2,3],[4,5,6]]])
a.shape
(2, 2, 3)
a = np.array([[1,2,3],[4,5,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值