def empty(shape, dtype=None, order='C', *args, **kwargs): # real signature unknown; NOTE: unreliably restored from __doc__ """ empty(shape, dtype=float, order='C', *, like=None) Return a new array of given shape and type, without initializing entries. Parameters ---------- shape : int or tuple of int Shape of the empty array, e.g., ``(2, 3)`` or ``2``. dtype : data-type, optional Desired output data-type for the array, e.g, `numpy.int8`. Default is `numpy.float64`. order : {'C', 'F'}, optional, default: 'C' Whether to store multi-dimensional data in row-major (C-style) or column-major (Fortran-style) order in memory. like : array_like Reference object to allow the creation of arrays which are not NumPy arrays. If an array-like passed in as ``like`` supports the ``__array_function__`` protocol, the result will be defined by it. In this case, it ensures the creation of an array object compatible with that passed in via this argument. .. versionadded:: 1.20.0 Returns ------- out : ndarray Array of uninitialized (arbitrary) data of the given shape, dtype, and order. Object arrays will be initialized to None. See Also -------- empty_like : Return an empty array with shape and type of input. ones : Return a new array setting values to one. zeros : Return a new array setting values to zero. full : Return a new array of given shape filled with value. Notes ----- `empty`, unlike `zeros`, does not set the array values to zero, and may therefore be marginally faster. On the other hand, it requires the user to manually set all the values in the array, and should be used with caution. Examples -------- >>> np.empty([2, 2]) array([[ -9.74499359e+001, 6.69583040e-309], [ 2.13182611e-314, 3.06959433e-309]]) #uninitialized >>> np.empty([2, 2], dtype=int) array([[-1073741821, -1067949133], [ 496041986, 19249760]]) #uninitialized """ pass
返回给定形状和类型的新数组,而不初始化条目。
参数
----------
形状:int或int的元组
空数组的形状,例如,`(2,3)`或`2`。
数据类型:数据类型,可选
数组所需的输出数据类型,例如,`numpy.int8`。默认为
`numpy.float64`.
顺序:{C',F'},可选,默认值:'C'
是否在主行中存储多维数据
(C-style)或主列(Fortran)顺序
比如:数组
引用对象,以允许创建非NumPy阵列。如果像这样的数组作为``like``传入支持。根据``__array_function__``协议,将定义结果是的。在这种情况下,它可以确保创建数组对象与通过此参数传入的一致。
out : ndarray
给定形状、数据类型和类型的未初始化(任意)数据数组顺序对象数组将被初始化为无。
另见
--------
empty_like:返回一个带有输入形状和类型的空数组。
one:将一个新的数组设置值返回到一。
zeros:将新的数组设置值返回到零。
full:返回一个给定形状的新数组,其中填充了值。
例子:
--------
>>> np.empty([2, 2])
array([[ -9.74499359e+001, 6.69583040e-309],
[ 2.13182611e-314, 3.06959433e-309]]) #uninitialized
>>> np.empty([2, 2], dtype=int)
array([[-1073741821, -1067949133],
[ 496041986, 19249760]]) #uninitialized