【算法S4-分治】

本文深入探讨了分治法,包括其一般方法、二分检索算法及其复杂度分析,以及归并排序的原理和复杂度。通过定理和实例解释了二分检索的成功和不成功检索的比较次数,并证明了归并排序在最坏情况下的时间复杂度为O(nlogn),是基于比较的分类问题的最优算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

分治法

4.1一般方法

分治法通常用于求解一个输入规模n且取值又相当大的问题,且子问题与原问题为相同类型
步骤通常如下:

  • :将n个输入分成k个不同输入子集合(k常为2).
  • :对这k个不同的可独立求解的子问题进行求解,并获得解。
  • :将k个独立子问题的解合并成整个问题的解。
    分治法常用递归解决。

算法4.1-分治策略的抽象化控制

DANDC(p,q):
在这里插入图片描述

SMALL(p,q)是一个布尔值函数,可判断输入规模为p-q+1的问题。
若此规模下的子问题足够小,调用G(p,q)求解此子问题。反之,调用分割函数DIVIDE(p,q),返回分割位置,将原问题划分为A(p:m)和A(m+1,q)的两个子问题,分别求解并利用COMBINE()函数合并两个子问题的解即可。

算法4.1复杂度分析

在这里插入图片描述

4.2 二分检索

4.2.1二分检索算法

:待检索的数组元素已经按照非降次序排列。
BINSRCH(A,n,x,j)
在这里插入图片描述

分析以比较为基础的检索算法的复杂度常借助二元比较树
内结点:用圆形结点表示ÿ

矩阵乘法的分治算法通常是利用递归思想,例如Strassen's Algorithm(斯特拉斯曼算法),它是经典的分而治之,而是通过将大矩阵划分为四个部分,然后应用七次较小的矩阵运算。这里提供一个简单的Python版本的Strassen's Algorithm实现,注意这只是一个简化版的示例,实际实现可能会更复杂,并需要处理边界条件和其他细节: ```python def strassen(a, b): if len(a) <= 1: return a * b # base case m, n = len(a), len(b) s1 = strassen(matrix_split(a, n, 0), matrix_split(b, n, 0)) # P1 s2 = strassen(matrix_split(a, n, n//2), matrix_split(b, m//2, 0)) # P2 s3 = strassen(matrix_split(a, n, n//2), matrix_split(b, m//2, m//2)) # P3 s4 = strassen(matrix_split(a, n//2, 0), matrix_split(b, m, m//2)) # P4 s5 = strassen(add_subtract_multiply(a, b, 0, n//2, m//2), b, m//2) # S1 s6 = strassen(add_subtract_multiply(a, b, n//2, n, m//2), add_subtract_multiply(a, b, 0, n, m//2), n//2, n//2, 0) # S2 s7 = strassen(add_subtract_multiply(a, b, 0, n//2, 0), add_subtract_multiply(a, b, n//2, n, 0), n//2, n//2, m//2) # S3 c = [[0] * m for _ in range(n)] c[0: n//2, 0: n//2] = s1 + s4 c[0: n//2, n//2: n] = s3 c[n//2: n, 0: n//2] = s2 c[n//2: n, n//2: n] = s1 + s5 - s2 - s4 return c # 辅助函数:分割矩阵和加减乘操作 def matrix_split(matrix, n, split): return [matrix[i:i+n, split:split+n] for i in range(0, n)] def add_subtract_multiply(a, b, start_a, end_a, start_b): # 这里只是一个简单的示例,实际操作中会涉及到四个较小的矩阵相加、相减和相乘 # 根据实际需求编写完整版本 return ... # 测试 a = [[1, 2], [3, 4]] b = [[5, 6], [7, 8]] result = strassen(a, b) print(result) ``` 请注意,上述代码并没有完全实现所有Strassen算法细节,特别是`add_subtract_multiply`函数中的加减乘部分需要根据Strassen算法的具体规则编写。此,这个版本也适用于大规模矩阵,因为它并是一个高效的实现,实际应用会考虑其他算法如BLAS库提供的矩阵乘法功能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ImSev7en_1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值