自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(123)
  • 资源 (17)
  • 收藏
  • 关注

原创 ConvNeXt V2学习笔记

在改进的架构和更好的表示学习框架的推动下,视觉识别领域在21世纪20年代初实现了快速现代化和性能提升。例如,以ConvNeXt[52]为代表的现代ConvNets在各种场景中都表现出了强大的性能。虽然这些模型最初是为使用ImageNet标签的监督学习而设计的,但它们也可能受益于自监督学习技术,如蒙面自编码器(MAE)[31]。然而,我们发现,简单地结合这两种方法会导致性能不佳。在本文中,我们提出了一个全卷积掩码自编码器框架和一个新的全局响应归一化(GRN)层。

2023-01-05 20:50:16 6088 2

原创 YOLO系列算法学习

更换骨干网络Darknet结构(分类和检测结构)旷世研究院新作对于两种网络怎么选择?对于小分辨率,640x640大小,二者都可以进行尝试,如果是大分辨率图像最好使用V5,因为yolox在官方仓库中为提供大分辨率的检测。

2022-10-15 09:58:38 1567 1

原创 MetaFormer/PoolFormer学习笔记及代码

变形金刚在计算机视觉任务中显示出巨大的潜力。人们普遍认为,他们基于注意力的模块对他们的能力贡献最大。然而,最近的研究表明,Transformers中基于注意力的模块可以被空间MLP所取代,得到的模型仍然表现良好。基于这一观察**,我们假设变压器的一般架构,而不是特定的令牌混频器模块,对模型的性能更为重要**。为了验证这一点,我们故意用令人尴尬的简单空间池算子替换Transformers中的注意力模块,以仅进行基本令牌混合。.........

2022-08-03 10:30:02 1655

原创 MobileVIT学习笔记

轻型卷积神经网络(CNN)实际上是用于移动视觉任务的。他们的空间归纳偏差允许他们在不同的视觉任务中以较少的参数学习表征。然而,这些网络在空间上是局部的。为了学习全局表示,采用了基于自注意力的视觉变换器(VIT)。与CNN不同,VIT是重量级的。在本文中,我们提出了以下问题是否有可能结合CNN和ViTs的优势,为移动视觉任务构建一个重量轻、延迟低的网络?为此,我们介绍了MobileViT,一种用于移动设备的轻型通用视觉transformers。...

2022-07-26 17:47:29 1539

原创 EPSANet学习笔记

EPSANet: An Efficient Pyramid Squeeze Attention Block on Convolutional Neural Network最近,研究表明,在深度卷积神经网络中嵌入注意力模块可以有效提高其性能。在这项工作中,提出了一种新的轻量级和有效的注意力方法,称为金字塔挤压注意力(PSA)模块。通过在ResNet的瓶颈块中用PSA模块替换3x3卷积,获得了一种新的表示块,称为有效金字塔挤压注意力(EPSA)。EPSA块可以很容易地作为即插即用组件添加到成熟的主干网络中,并且

2022-07-11 11:44:44 3165

原创 XCiT学习笔记

在自然语言处理取得巨大成功后,transformers最近在计算机视觉方面显示出了很大的前景。transformers底层的自注意力操作产生了所有令牌(即文字或图像块)之间的全局交互,并允许在卷积的局部交互之外对图像数据进行灵活建模。然而,**这种灵活性在时间和内存方面具有二次复杂性,阻碍了对长序列和高分辨率图像的应用**。我们提出了一种“transposed”版本的自注意力,它跨特征通道而不是令牌进行操作,**其中交互基于键和查询之间的互协方差矩阵**。由此产生的 cross-covariance att

2022-07-03 10:29:13 2892

原创 ViT(Vision Transformer)论文笔记

ViT(Vision Transformer)论文笔记(AN IMAGE IS WORTH 16X16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE)Abstact虽然Transformer架构已经成为自然语言处理任务的事实标准,但它在计算机视觉中的应用仍然有限。在视觉中,注意力要么与卷积网络结合使用,要么用于替换卷积网络的某些组件(替换CNN模型的一部分),同时保持其整体结构。我们表明,这种对CNN的依赖是不必要的,直接应用于图像块序列的 pu

2022-04-06 14:35:38 6796

原创 知识蒸馏算法原理

知识蒸馏算法原理“蒸馏”的概念大概就是将本身不够纯净的水通过加热变成水蒸气,冷凝之后就成更纯净的水知识蒸馏同样使用这种原理,将不太纯净的“知识”通过“蒸馏”的方式获得更加有用或者纯净的“知识”体现在神经网络中如下图所示:一个大而臃肿,但知识丰富且高效的“教师网络”,通过转换精准将特定领域的知识传授给“学生网络”,让“学生网络”在某个方面做得很好,并且不那么臃肿,类似“模型压缩”为什么不直接使用教师网络?因为将算法应用在现实生活中很多设备的算力会被限制,因此需要尽可能.

2022-03-21 09:46:37 9739 5

原创 ResNet论文笔记及Pytorch代码解析

何凯明大神的经典作品,ResNet论文阅读笔记

2021-12-19 15:19:06 2847 1

原创 MMdetection自定义数据集训练及相关配置

安装完以后,验证一下是否安装正确。如果不报错,有正常结果,代表安装成功。其他的包可以通过注意:中间遇到缺少的库自己安装,比如pytorch,根据自己的硬件环境安装对应的pytorch版本。

2024-01-21 17:17:43 553 3

原创 git上传代码(第一次或已有代码)

【代码】git上传代码(第一次或已有代码)

2023-10-26 14:08:08 338

原创 华为诺亚实验室VanillaNet学习笔记

基础模型的核心理念是“多而不同”,计算机视觉和自然语言处理领域的惊人成功就是例证。然而,优化的挑战和变压器模型固有的复杂性要求范式向简单性转变。在这项研究中,我们介绍了VanillaNet,一个包含优雅设计的神经网络架构。通过避免高深度、快捷方式和复杂的操作(如自我关注),vanillanet令人耳目一新的简洁却非常强大。每一层都被精心制作得紧凑而直接,非线性激活函数在训练后被修剪以恢复原始结构。VanillaNet克服了固有复杂性的挑战,使其成为资源受限环境的理想选择。

2023-05-28 12:54:56 1433

原创 Paddle 模型转 TensorRT加速模型

NVIDIA TensorRT 是一个高性能的深度学习预测库,可为深度学习推理应用程序提供低延迟和高吞吐量。。在这篇文章中,我们会介绍如何使用Paddle-TRT子图加速预测。当模型加载后,神经网络可以表示为由变量和运算节点组成的计算图。如果我们打开TRT子图模式,,Paddle会对模型图进行分析同时使用TensorRT。在模型的。TensorRT除了有常见的OP融合以及显存/内存优化外,还针对性的对OP进行了优化加速实现,降低预测延迟,提升推理吞吐。

2023-05-23 15:35:16 2014 2

原创 DeepStream-test1-python-demo样例

基于知乎博客解释完成:https://zhuanlan.zhihu.com/p/359079725test1样例的整体流程: 首先数据源元件(filesrc)负责从磁盘上读取视频数据,解析器元件(h264parse)负责对数据进行解析,编码器元件(nvv4l2decoder)负责对数据进行解码,流多路复用器元件(nvstreammux)负责批处理帧以实现最佳推理性能,推理元件(nvinfer)负责实现加速推理,转换器元件(nvvideoconvert)负责将数据格式转换为输出显示支持的格式,可视化元件(

2023-03-16 14:14:41 787

原创 Pytorch模型转TensorRT步骤

pytorch模型使用tensorRT加速

2023-03-14 16:11:24 1794

原创 EdgeYOLO学习笔记

本文基于最先进的YOLO框架,提出了一种高效、低复杂度、无锚的目标检测器,该检测器可以在边缘计算平台上实时实现。为了有效抑制训练过程中的过拟合,我们开发了一种增强的数据增强方法,并设计了混合随机损失函数来提高小目标的检测精度。在FCOS的启发下,提出了一种更轻、更高效的解耦磁头,在不损失精度的情况下提高了推理速度。

2023-03-05 14:09:33 1089 3

原创 Skip-Attention学习笔记

这项工作旨在提高视觉变换器(ViT)的效率。虽然ViT在每一层中都使用计算成本高昂的自我关注操作,但我们发现这些操作在各层之间高度相关——这是一种关键的冗余,会导致不必要的计算。基于这一观察,我们提出了SKIPAT,这是一种重用来自前一层的自我注意力计算来近似一个或多个后续层的注意力的方法。为了确保跨层重用自我关注块不会降低性能,我们引入了一个简单的参数函数,该函数在计算速度更快的同时,性能优于基线变换器。

2023-02-07 12:20:06 1555 2

原创 MAE-DET学习笔记

在对象检测中,检测主干消耗了整个推理成本的一半以上。最近的研究试图通过借助神经架构搜索(NAS)优化主干架构来降低这一成本。然而,现有的用于对象检测的NAS方法需要数百到数千GPU小时的搜索,这使得它们在快节奏的研究和开发中不切实际。在这项工作中,我们提出了一种新的zero-shotNAS方法来解决这个问题。所提出的方法名为MAE-DET,通过最大熵原理自动设计有效的检测主干,而无需训练网络参数,将架构设计成本降低到几乎零,同时提供最先进的(SOTA)性能。

2023-02-06 22:05:00 1282 1

原创 yolov5模型量化示例

yolo部署实例前置知识

2023-02-03 11:36:03 760

原创 神经网络图优化与量化模拟

计算图和量化算子的一些规则

2023-02-01 22:05:05 128

原创 基于语义分割Ground Truth(GT)转换yolov5图像分割标签(路面积水检测例子)

随着开发者在issues中对 用yolov5做分割任务的呼声高涨,yolov5团队真的在帮开发者解决问题,v6.0版本之后推出了最新的解决方案并配指导教程。之前就有使用改进yolo添加分割头的方式实现目标检测和分割的方法,最新的v7.0版本有了很好的效果,yolov8在分割方面也是重拳出击因此使用yolo进行完成目标检测也是落地项目的一个选择,而且yolo的生态更适合落地,并且实现试试检测。但是目前的公开数据集大部分使用的是其他分割领域模型,当然标签也是适配其他模型。我在做。

2023-01-29 11:18:16 2522 4

原创 基于语义分割Ground Truth(GT)转换yolov5目标检测标签(路面积水检测例子)

语义分割GT数据标签转换为yolov5txt目标检测标签

2023-01-28 17:14:07 3446 16

原创 神经网络量化硬件实现

各种算子的硬件量化

2023-01-18 21:43:46 413

原创 神经网络部署

神经网络部署

2023-01-16 20:54:59 279 2

原创 TensorRT部署神经网络

大佬的TensorRT讲解记录一下优化前优化后融图,多余的kernal去除 速度更快代码TensorRT 后训练量化(PPQ)Quant with TensorRT OnnxParserQuant with TensorRT API

2023-01-16 20:14:35 270

原创 神经网络加速基础知识

神经网络加速基础知识

2023-01-15 21:34:11 112

原创 GhostNetV2学习笔记

轻量级卷积神经网络(CNNs)是专为在移动设备上具有较快推理速度的应用而设计的。卷积运算只能捕获窗口区域的局部信息,这阻碍了性能的进一步提高。在卷积中引入自我注意可以很好地捕获全局信息,但会极大地影响卷积的实际速度。在本文中,我们提出了一种硬件友好的注意机制(称为DFC注意),然后提出了一种新的移动应用的GhostNetV2架构。所提出的DFC注意结构基于全连接层,既能在普通硬件上快速执行,又能捕获远距离像素间的依赖关系。

2022-11-21 11:00:55 5917 10

原创 Deformable Attention学习笔记

Transformer 最近在各种视觉任务中表现出卓越的表现。大的(有时甚至是全局的)接受域使Transformer模型比CNN模型具有更高的表示能力。然而,单纯扩大接受野也会引起一些问题。一方面,在ViT中使用密集注意力会导致过多的内存和计算成本,特征会受到超出感兴趣区域的无关部分的影响。另一方面,PVT或Swin Transformer中采用的稀疏注意是数据不可知的,可能会限制建模远程关系的能力。为了解决这些问题,我们提出了一种新的Deformable 自注意模块,

2022-11-19 11:17:39 8742

原创 DEFORMABLE DETR学习笔记

DETR最近被提出,以消除在目标检测中需要许多手工设计的组件,同时展示良好的性能。但由于Transformer注意模块在处理图像特征映射时的局限性,其收敛速度慢,特征空间分辨率有限。为了缓解这些问题,我们提出了Deformable 的DETR,它的注意模块只关注参考点周围的一小部分关键采样点。Deformable 的DETR可以比DETR(特别是在小物体上)获得更好的性能,且训练时间少10倍。在COCO基准上的大量实验证明了我们方法的有效性。代码发布在。

2022-11-16 21:13:36 1411

原创 DETR学习笔记

我们提出了一种新的方法,将目标检测视为直接集预测问题。我们的方法简化了检测流程,有效地消除了许多手工设计的组件的需求,如非最大抑制过程或锚生成(显式编码关于任务的先验知识)。新框架的主要组成部分称为DEtection TRansformer或DETR,是基于集合的全局损耗,通过二部匹配强制进行唯一的预测,以及一个变压器编码器-解码器架构。给定一个固定的学习对象查询的小集合,DETR推理对象和全局图像上下文之间的关系,直接并行输出最终的预测集合(并行的原因是目标检测过程中没有前后顺序,同时并行可以提高速度)

2022-11-14 09:57:10 1771 1

原创 DINO学习笔记

我们提出了DINO(DETR with Improved deNoising anchOr boxes),一种先进的端到端对象检测器。DINO采用对比的去噪训练方法、混合查询选择方法进行锚点初始化和两次前瞻的盒子预测方法,在性能和效率上都优于以往的类detrr模型。DINO在具有ResNet-50骨干和多尺度特征的COCO上实现了12 epochs 49.4AP和24 epochs 51.3AP,与之前最好的类detr模型DN-DETR相比,分别获得了+6.0AP和+2.7AP的显著改进。

2022-11-13 09:54:04 6008

原创 时间复杂度和空间复杂度

时间复杂度和空间复杂度

2022-11-09 16:21:13 103

原创 Fast-ParC学习笔记

近年来,T型变压器模型在各个领域都取得了长足的进步。在计算机视觉领域,视觉变压器(ViTs)也成为卷积神经网络(ConvNets)的有力替代品,但由于卷积神经网络和视觉变压器都有各自的优点,所以它们无法取代卷积神经网络。例如,vit善于利用注意机制提取全局特征,而ConvNets则因其强烈的归纳偏差而更有效地建模局部关系。一个自然产生的想法是结合ConvNets和vit的优点来设计新的结构。本文提出了一种新的基本神经网络算子——位置感知圆卷积(ParC)及其加速版Fast-ParC。

2022-11-09 11:17:25 1554

原创 c++学习-STL常用函数

c++ stl常用函数记录

2022-11-08 21:44:32 494

原创 c++学习--第七STL-基础

stl基本特征学习记录

2022-11-07 20:38:49 554

原创 ssFPN学习笔记

特征金字塔网络(FPN)是目标检测模型中考虑目标不同尺度的重要模块。然而,在小物体上的平均精度(AP)相对低于在中型和大型物体上的AP。原因是CNN更深的一层作为特征提取层会造成信息丢失。提出了一种新的FPN尺度序列(S2S^2S2)特征提取方法,以增强小目标的特征信息。我们将FPN结构视为尺度空间,在FPN的水平轴上通过三维卷积提取尺度序列(S2S^2S2)特征。它基本上是一个比例不变的特征,建立在小物体的高分辨率金字塔特征图上。此外,所提出的S2S^2S2。

2022-11-06 20:46:39 1516 3

原创 Neurocomputing投稿记录

Neurocomputing投稿记录

2022-11-03 10:24:00 17112 110

原创 Hydra Attention学习笔记

虽然transformers已经开始在视觉领域的许多任务中占据主导地位,但将它们应用于大型图像在计算上仍然很困难。一个很大的原因是,自我注意力随标记的数量成二次增长,而标记的数量又随图像的大小成二次增长。对于较大的图像(例如,1080p),网络中超过60%的计算都花在创建和应用注意矩阵上。我们通过引入Hydra Attention向解决这个问题迈出了一步,它是视觉transformers(ViTs)的一种非常高效的注意操作。

2022-10-24 11:07:24 1208

原创 目标检测SSD学习笔记

我们提出了一种使用单一深度神经网络来检测图像中的对象的方法。我们的方法,命名为SSD,将边界框的输出空间离散化为一组默认框,每个特征地图位置具有不同的纵横比和比例。在预测时,网络为每个默认框中每个对象类别的存在生成分数,并对框进行调整以更好地匹配对象形状。此外,该网络结合了来自不同分辨率的多个特征地图的预测,以自然地处理各种尺寸的物体。相对于需要对象提议的方法,SSD是简单的,因为它完全消除了提议生成和随后的像素或特征重采样阶段,并且将所有计算封装在单个网络中。

2022-10-15 19:27:05 877

原创 FPN特征金字塔结构学习笔记

特征金字塔是识别系统中的基本组件,用于检测不同尺度的对象。但最近的深度学习对象检测器已经避免了金字塔表示,部分原因是它们是计算和内存密集型的。在本文中,我们利用深度卷积网络固有的多尺度金字塔层次结构来构造具有边际额外成本的特征金字塔。开发了一种具有横向连接的自顶向下架构,用于在所有尺度上构建高级语义特征图。这种被称为特征金字塔网络(FPN)的体系结构在几个应用中作为通用特征提取器显示出显著的改进。

2022-10-03 22:36:08 1847

对CNN和Transformer注意力机制的汇总以及注意的具体计算和概念详解,可以作为汇报使用

注意力机制(英語:attention)是人工神经网络中一种模仿认知注意力的技术。这种机制可以增强神经网络输入数据中某些部分的权重,同时减弱其他部分的权重,以此将网络的关注点聚焦于数据中最重要的一小部分。数据中哪些部分比其他部分更重要取决于上下文。可以通过梯度下降法对注意力机制进行训练。 类似于注意力机制的架构最早于1990年代提出,当时提出的名称包括乘法模块(multiplicative module)、sigma pi单元、超网络(hypernetwork)等。注意力机制的灵活性来自于它的“软权重”特性,即这种权重是可以在运行时改变的,而非像通常的权重一样必须在运行时保持固定。注意力机制的用途包括神经图灵机中的记忆功能、可微分神经计算机中的推理任务[2]、Transformer模型中的语言处理、Perceiver(感知器)模型中的多模态数据处理(声音、图像、视频和文本)。人类的注意力机制(Attention Mechanism)是从直觉中得到,它是人类利用有限的注意力资源从大量信息中快速筛选出高价值信息的手段。深度学习中的注意力机制借鉴了人类的注意力思维方式,被广泛的应用在自然语言

2023-02-07

U-Net官方给出的讲解和实验结果

U-Net官方给出的讲解和实验结果

2022-04-12

谷歌插件_懂得自然懂.zip

懂得自然懂,可以直接使用的小插件,解压后拖入插件即可使用,简单方便

2021-07-17

Deep-Learning-with-PyTorch.rar

Pytorch的深度学习应用操作

2021-07-12

面向机器学习的特征工程.zip

Feature Engineering for Machine Learning

2021-07-12

charles.jar

charles-proxy的替换包,对应版本charles-proxy-4.5.5-win64,安装完成之后,将该文件替换安装目录中的同名文件即可

2021-07-12

王道数据结构课后选填汇总

数据结构复习使用,方便二刷数据结构选填使用

2021-02-19

王道操作系统课后题选填.doc

总结王道操作系统课后练习题,方便二刷课后选填

2021-02-19

OS_英文简写.pdf

操作系统相关的字母缩写,方便做题时查看

2021-02-19

各章知识点整理.xmind

王道操作系统思维导入,对主要考研知识进行总结并编辑成xmind导入,方便查找和复习

2021-02-19

mLogcat(1).exe

mLogcat is an Android Logcat and Kernel Viewer for Windows. The program displays kernel messages, logcat and the CPU/memory history. mLogcat also includes a source viewer integrated with external editors, enabling you to easily navigate the source code.log

2020-03-23

mongodb_deployment.sh

用于多节点异地部署在服务器上运行,简化安装过程,脚本需要在使用过程中更换IP。

2019-10-04

docker_install.sh

通过shell脚本进行docker安装,并进行初始化、开启docker。

2019-10-04

mongodb_install_shell.sh

使用脚本实现运维自动化,简单安装mongodb并进行设置,在便捷得情况下实现运维自动化。

2019-10-04

Google深梦项目展示(部分)

谷歌里用一帮人做了大量图片机械学习。然后你随便上传一张图片它就会给你梦境化。但是怎么看都像是大麻幻觉化。给人一种进入梦境的感觉

2019-06-20

EndNoteX9_CHS.zip

Endnote由Thomson Corporation下属的Thomson ResearchSoft 开发。 Thomson ResearchSoft是以学术信息市场化和开发学术软件为宗旨的子公司。Thomson Corporation总部位于美国康涅狄格州的Stanford。

2019-06-20

多尺度卷积神经网络的头部姿态估计_梁令羽.pdf

针对头部姿态估计准确率在实际应用中易受到光照、遮挡等干扰因素的影响以及大量运算导致算法运行 速度较低的问题,提出了多尺度卷积神经网络的头部姿态估计算法。通过使用不同尺度的卷积核对输入的头部 姿态图片进行特征提取,丰富了图像特征的同时保留了图像信息,增强算法对干扰因素的鲁棒性。同时引入 1x1 卷积对网络结构参数进行降维,降低系统的运算量,提高算法的时效性。实验结果表明,本文提出的算法在 Pointing ‘04 和 CAS-PEAL-R1 数据库的识别率分别为 96.5%和 98.9%,对于光照、表情、遮挡等干扰表现出较 好的鲁棒性,具有较好的运行速度

2019-06-20

mnist数据集

MNIST 数据集来自美国国家标准与技术研究所, National Institute of Standards and Technology (NIST). 训练集 (training set) 由来自 250 个不同人手写的数字构成, 其中 50% 是高中学生, 50% 来自人口普查局 (the Census Bureau) 的工作人员. 测试集(test set) 也是同样比例的手写数字数据. --------------------- 作者:liuchengxu_ 来源:CSDN 原文:https://blog.csdn.net/simple_the_best/article/details/75267863 版权声明:本文为博主原创文章,转载请附上博文链接!

2019-02-20

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除