结构化数组
假设要保存这样的数据
name | age | wgt | |
---|---|---|---|
0 | dan | 1 | 23.1 |
1 | ann | 0 | 25.1 |
2 | sam | 2 | 8.3 |
首先定义一个人的结构类型
person_dtype = np.dtype([('name', 'S10'), ('age', 'int'), ('weight', 'float')])
然后构建一个3x4的空结构体数组:
people = np.empty((3,4), person_dtype)
分别赋值
people['name'] = [['Brad', 'Jane', 'John', 'Fred'],
['Henry', 'George', 'Brain', 'Amy'],
['Ron', 'Susan', 'Jennife', 'Jill']]
people['age'] = [[33, 25, 47, 54],
[29, 61, 32, 27],
[19, 33, 18, 54]]
people['weight'] = [[135., 105., 255., 140.],
[154., 202., 137., 187.],
[188., 135., 88., 145.]]
当然还可以 从文本中读取结构化数组
person_dtype = np.dtype([('name', 'S10'), ('age', 'int'), ('weight', 'float')])
people = np.loadtxt('people.txt',
skiprows=1,
dtype=person_dtype)
people
所以结构化数组的关键在于我们如何去看待去解释这段内存
即 你的自定义dtype是什么
嵌套类型
有时候,结构数组中的域可能包含嵌套的结构,例如,在我们希望在二维平面上纪录一个质点的位置和质量:
position | mass | |
---|---|---|
x | y | |
那么它的类型可以这样嵌套定义:
particle_dtype = np.dtype([('position', [('x', 'float'),
('y', 'float')]),
('mass', 'float')
])
data = np.loadtxt('data.txt', dtype=particle_dtype)
array 还是 matrix?
Numpy 中不仅提供了 array 这个基本类型,还提供了支持矩阵操作的类 matrix,但是一般推荐使用 array:
很多 numpy 函数返回的是 array,不是 matrix
在 array 中,逐元素操作和矩阵操作有着明显的不同
向量可以不被视为矩阵
具体说来:
- , dot(), multiply()
array: -逐元素乘法,dot() -矩阵乘法
matrix:* -矩阵乘法,multiply() -逐元素乘法 - 处理向量
array:形状为 1xN, Nx1, N 的向量的意义是不同的,类似于 A[:,1] 的操作返回的是一维数组,形状为 N,一维数组的转置仍是自己本身
matrix:形状为 1xN, Nx1,A[:,1] 返回的是二维 Nx1 矩阵 - 高维数组
array:支持大于2的维度
matrix:维度只能为2 - 属性
array:.T 表示转置
matrix:.H 表示复共轭转置,.I 表示逆,.A 表示转化为 array 类型 - 构造函数
array:array 函数接受一个(嵌套)序列作为参数——array([[1,2,3],[4,5,6]])
matrix:matrix 函数额外支持字符串参数——matrix("[1 2 3; 4 5 6]")
其优缺点各自如下:
-
项目
- 项目
- 项目
- 项目
-
array
- [GOOD] 一维数组既可以看成列向量,也可以看成行向量。v 在 dot(A,v) 被看成列向量,在 dot(v,A) 中被看成行向量,这样省去了转置的麻烦
- [BAD!] 矩阵乘法需要使用 dot() 函数,如: dot(dot(A,B),C) vs ABC
- [GOOD] 逐元素乘法很简单: A*B
- [GOOD] 作为基本类型,是很多基于 numpy 的第三方库函数的返回类型
- [GOOD] 所有的操作 *,/,+,**,… 都是逐元素的
- [GOOD] 可以处理任意维度的数据
- [GOOD] 张量运算
-
matrix
- [GOOD] 类似与 MATLAB 的操作
- [BAD!] 最高维度为2
- [BAD!] 最低维度也为2
- [BAD!] 很多函数返回的是 array,即使传入的参数是 matrix
- [GOOD] A*B 是矩阵乘法
- [BAD!] 逐元素乘法需要调用 multiply 函数
- [BAD!] / 是逐元素操作
当然在实际使用中,二者的使用取决于具体情况。
二者可以互相转化:
- asarray :返回数组
- asmatrix(或者mat) :返回矩阵
- asanyarray :返回数组或者数组的子类,注意到矩阵是数组的一个子类,所以输入是矩阵的时候返回的也是矩阵