使用Householder方法对矩阵QR分解

Module mod
  Implicit none
  Integer, parameter, public :: m = 4, n = 3
  !Real(kind=8), public :: A(m,n) = reshape( [1.,2.,2.,-4,-4.,3.,2.,-2,1.,2.,3.,4.],[m,n] )
  Real(kind=8), public :: A(m,n) = reshape( [1.,2.,2.,-4.,3.,2.,2.,5.,2.,3.,4.,5.],[m,n] )
  !Real(kind=8), public :: A(m,n) = reshape( [1.,2.,2.,-4.,-4.,3.,2.,-2.],[m,n] )
Contains
  Subroutine calHouseholderMatrix
    Implicit none
    Integer :: i, j, k, length
    Real(kind=8) :: norm_x
    Real(kind=8), allocatable :: w(:), v(:,:), x(:)
    Real(kind=8), allocatable :: P(:,:), tmpH(:,:), tmpI(:,:)
    Real(kind=8) :: Q(m,m), R(m,n), II(m,m)
    
    R = A
    k = 0
    Do i = 1, n
      length = m - k
      allocate( x(length), v(length,1), w(length) )
      allocate( P(length,length), tmpH(length,length), tmpI(length,length) )
      
      x = R(i:m,i)
      w = 0.d0
      
      norm_x = dot_product( x,x )
      w(1) = sqrt( norm_x )  !// w = [ |x|2, 0, ..., 0 ]
      v(:,1) = w - x  !// v = w - x
      P = matmul( v,transpose(v) ) / dot_product( v(:,1),v(:,1) )  !// P = v*v'/(v'*v)
      
      tmpI = 0.d0
      Do j = 1, length
        tmpI(j,j) = 1.d0
      End do
      tmpH = tmpI - 2.d0 * P  !// H = I - 2P
      
      If ( i < 2 ) then
        R = matmul( tmpH, A )
        Q = tmpH
      else
        II = 0.d0
        Do j = 1, m
          II(j,j) = 1.d0
        End do
        II(i:m,i:m) = tmpH
        Q = matmul( Q, II )
        R = matmul( II, R )
      End if
      
      k = k + 1
      Deallocate( x, v, w, P, tmpH, tmpI )
    End do
    
    Write ( *,'(1x,a)' ) 'The matrix Q is:'
    Do i = 1, m
      Write (*,'(*(f14.8))') Q(i,:)
    End do
    
    Write ( *,'(1x,a)' ) 'The matrix R is:'
    Do i = 1, m
      Write (*,'(*(f14.8))') R(i,:)
    End do
    
    Write ( *,'(1x,a)' ) 'The matrix A is:'
    A = matmul( Q,R )
    Do i = 1, m
      Write (*,'(*(f14.8))') A(i,:)  !// A = QR
    End do
    
    Q = matmul(Q,transpose(Q))
    Write ( *,'(1x,a)' ) 'The matrix Q*Q'' is:'
    Do i = 1, m
      Write (*,'(*(f14.8))') Q(i,:)  !// Q¾ßÓÐÕý½»ÐÔ¡£Q*Q' = I
    End do
    
  End subroutine calHouseholderMatrix
End module mod
  
Program HouseholderMatrix
  use mod
  Implicit none
  call calHouseholderMatrix
End program HouseholderMatrix

 

### 回答1: 矩阵qr分解是一种将一个矩阵分解为一个正交矩阵和一个上三角矩阵方法。这个方法可以用来求解线性方程组、最小二乘问题等。其中,正交矩阵是指其转置矩阵等于其逆矩阵,而上三角矩阵则是指其下三角元素均为。 Householder变换是qr分解中的一种重要的变换方法,它可以将一个向量通过一个正交矩阵的作用,变换为一个只有一个非零元素的向量。这个非零元素就是该向量的模长,而其方向则与原向量相同。通过多次应用Householder变换,可以将一个矩阵转化为上三角矩阵,从而实现qr分解。 ### 回答2: 矩阵QR分解是一种将矩阵分解为两个部分的方法,其中一个部分是正交矩阵Q,另一个部分是上三角矩阵R。矩阵QR分解的最大优点是可以解决多元线性方程组的问题,简化了多元线性方程组的求解过程。 Householder变换是QR分解算法中重要的一环,它是一种线性变换,主要用于实现矩阵的三角化。Householder变换是通过一个向量来定义的,这个向量由原始矩阵中的一个列向量通过特定的计算得到。 Householder变换的计算公式如下: H=I-2vv^T/(v^Tv) 其中,H是Householder变换矩阵,I是单位矩阵,v是由原始矩阵的一个列向量构成的向量。 通过对原始矩阵中的每个列向量应用Householder变换,可以逐步将原始矩阵转化为上三角矩阵。由于Householder变换是可逆的,所以当将原始矩阵完全三角化之后,可以通过矩阵乘法将所有的变换矩阵相乘,得到正交矩阵Q和上三角矩阵R,即原始矩阵QR分解。 总之,QR分解通过将原始矩阵转化为正交矩阵和上三角矩阵的乘积,简化了多元线性方程组的求解过程。Householder变换则是QR分解中的重要环节,它通过矩阵的三角化实现了QR分解的目标。 ### 回答3: 矩阵QR分解是一种将矩阵分解成正交矩阵(Q)和上三角矩阵(R)的技术。它是许多重要算法的基础,如线性最小二乘法和特征值问题。实现QR分解的一种方法Householder变换。 Householder变换是一种可用于线性代数中的矩阵变换的技术。它可以将一个矩阵转换成其他类型的矩阵,同时保持它的基本性质。这是一种一个向量关于一个超平面(即一个n维矩阵)进行反射的方法。如果域是实数域,那么这种变换是轴对称变换,而对于复数域,这种变换是中心对称变换。 对于QR分解Householder变换被用于将矩阵A分解成正交矩阵Q和上三角矩阵R的乘积。这个过程通常称为Householder QR分解。这种技术的基本思想是,通过一系列的Householder变换将A转换为一个上三角矩阵R,在变换过程中保持矩阵乘积不变,这个过程可以用数学公式表述如下: A=Q1R1 Q2Q1A=Q2Q1Q1R1 Q3Q2Q1A=Q3Q2Q1Q1R1 ... QnQn-1...Q2Q1A=Rn(QnQn-1...Q2Q1) 其中Q1, Q2, ..., Qn是Householder变换,它们被定义为将v与另一个向量w反射为某个下三角矩阵的乘积。这过程被称为Householder QR分解。在这个过程中,每个Householder变换都将一个向量变换为使得对应矩阵中的下方的部分变为0的向量。 通过使用Householder QR分解,可以将一个矩阵分解为一个正交矩阵和一个上三角矩阵,从而简化数据处理。这种技术也可以用于解决线性最小二乘问题,并为计算特征值提供了一些基础。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值