KMV-DEMATEL模型汽车供应链金融信用风险评估应用

在现代汽车供应链金融领域,尤其是新能源汽车产业,资金约束是制约行业发展的关键因素。随着政府补贴政策的退坡,传统融资模式的局限性逐渐显现,导致行业亟需寻找新的融资路径。供应链金融作为一种有效的融资方式,因其能够优化资金流动、提升融资效率而受到广泛关注。然而,供应链金融模式相较于传统融资模式,其复杂性和涉及企业的多样性使得信用风险评估变得更加复杂。因此,本研究旨在利用KMV模型和DEMATEL模型来进行汽车供应链金融信用风险的评估,为新能源汽车行业的融资风险管理提供科学依据。

研究内容概述

本研究的核心内容包括对新能源汽车供应链金融中的信用风险进行识别、量化和评估。首先,本文通过分析供应链金融模式中的参与主体、融资模式及其信用风险形成机制,识别出影响信用风险的主要因素。在传统财务指标的基础上,结合新能源汽车行业的特点,创新性地引入了违约距离作为新的评估指标。其次,本文对经典KMV模型进行了修正,以提高模型对不同风险水平公司的区分度,并结合实际数据验证了修正后的模型性能。最后,结合DEMATEL模型构建了新能源汽车供应链金融的信用风险评估体系,并通过实证分析验证了评估模型的有效性。

在研究中,相关的理论基础包括供应链金融及信用风险理论、KMV风险度量模型及DEMATEL模型。KMV模型用于测量企业违约风险,DEMATEL模型则用于分析影响因素之间的因果关系和逻辑层次。这些理论基础为后续的模型搭建和评估提供了坚实的支撑。技术路线包括三个主要步骤:识别信用风险影响因素,修正KMV模型进行风险度量,构建基于DEMATEL模型的信用风险评估体系,并进行实证分析。

信用风险影响因素分析

在新能源汽车供应链金融中,信用风险的影响因素较为复杂。除了传统的财务指标,如资产负债率、营运能力等外,还需考虑行业特性带来的新兴风险因素。本文在传统财务指标的基础上,引入了违约距离这一创新指标,并结合新能源汽车行业的特点进行了综合分析。通过识别和分析这些因素,本文为信用风险评估提供了全面的基础数据和理论支持。

KMV模型的修正与优化

经典KMV模型在处理企业违约风险时存在一定的局限性,特别是在中国企业的负债情况和股权结构的特殊性方面。本文针对这些不足进行了修正,提出了基于修正KMV的违约距离度量模型。修正内容包括对非流通股对股权价值参数的估计进行调整,结合GARCH(1,1)模型优化股权价值波动率的估计,并对违约点进行修正。通过对比修正前后的计算结果,验证了修正模型在不同风险水平公司的区分度和识别能力。

DEMATEL模型在信用风险评估中的应用

DEMATEL模型是一种有效的多准则决策分析工具,能够分析影响因素之间的因果关系和相互影响的程度。在构建新能源汽车供应链金融的信用风险评估体系时,本文引入了DEMATEL模型来确定各影响因素的权重,并结合熵值和三角模糊数对DEMATEL模型进行了改进,以增强判断的客观性和降低语言的不确定性。通过这种方法,得出了符合实际情况的各层指标权重,为信用风险评估提供了科学依据。

在构建新能源汽车供应链金融的信用风险评估体系时,本文结合图论进行指标筛选,精简了评价指标,并搭建了一个三层的多指标信用风险评估体系。该体系包括基本指标层、准则层和决策层,能够全面反映供应链金融模式下的信用风险。通过DEMATEL模型计算得出的权重和加权平均算子进行信息集成,最终得出了整体信用风险的评估结果,为风险管理提供了系统化的工具。

实证分析与应用建议

为了验证所提出模型的实际应用效果,本文选择了新能源汽车供应链中的50个上市企业进行实证分析。通过对数据的处理和模型的应用,评估了这些企业的信用风险水平。分析结果表明,修正后的KMV模型和改进的DEMATEL模型能够有效地识别和评估供应链金融中的信用风险。在此基础上,本文提出了针对新能源汽车供应链金融的信用风险管理建议,包括优化融资结构、加强风险控制机制等,以提高供应链金融的整体风险管理水平。

由于非流通股缺乏流通性,不能以交易市价估值,因此非流通股的估值一直是资产价值 评估的重点,许多学者都进行了理论与实证研究 ,在这里本文引用由吴建民和贾知青 
基于国有股转让所提出的线性回归模型,该模型已被陈致远、刘成昆和陈蔚[144  应用于我国的 保理业务信用风险中且被验证,该模型表达式为:

修正模型:

通过KMV-DEMATEL模型对新能源汽车供应链金融中的信用风险进行了系统的评估,验证了模型在实际应用中的有效性。研究表明,结合定量分析与定性判断的方法,可以更全面地识别和评估信用风险。然而,模型在实际应用中也存在一定的局限性,如数据的准确性和模型参数的选择问题。未来的研究可以进一步探讨更多创新性的评估指标和改进措施,以提升信用风险评估的精度和可靠性。同时,随着新能源汽车行业的发展,供应链金融模式也将不断演变,相关研究需要及时跟进和调整。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值