✅ 博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。
✅ 具体问题可以私信或扫描文章底部二维码。
1. 基于异构数据和多层注意力机制的股票价格预测模型 Credible Net
股票市场是一个极其复杂的系统,受多种因素影响,如宏观经济指标、行业动态、公司财务状况、投资者情绪等。这些因素相互交织,使得股票价格的波动呈现出高度的不确定性和非线性特征。在众多影响因素中,股票历史价格数据和股票文本数据是两类重要的信息来源。然而,传统的股票预测方法在处理这些数据时存在诸多问题,如对历史价格数据的时间依赖性捕捉不足,对股票文本数据的处理不够精细,导致融合特征的有效性欠佳。
针对这些问题,提出了 Credible Net 模型。该模型的核心在于深入挖掘股票历史价格数据中的时间依赖关系。股票价格的波动并非完全随机,而是在一定程度上受到过去价格走势的影响。Credible Net 通过特殊的网络结构设计,能够捕捉到这种时间序列上的依赖关系,从而更好地理解股票价格的变化趋势。例如,它可以识别出股票价格在过去一段时间内的周期性波动模式,以及价格在不同时间段的变化速率和幅度等信息。
对于股票文本数据,Credible Net 采用了单词层和句子层的两层注意力机制。股票文本通常包含大量的信息,但其中也存在许多低质量的内容,如噪声、重复信息、无关话题等。单词层注意力机制能够聚焦于文本中的关键单词,通过对每个单词分配不同的权重,突出那些对股票价格预测具有重要意义的词汇。比如,当文本中提到公司的重大战略决策、财务报表发布等关键词时,模型能够给予这些单词更高的权重,从而更准确地理解文本的核心内容。句子层注意力机制则从句子的层面出发,对整个句子的重要性进行评估。它可以判断出哪些句子对于股票价格预测更具价值,避免被一些无关紧要的句子所干扰。通过这两层注意力机制的协同作用,能够有效地处理股票文本中的低质量信息,提取出有价值的文本特征。
将股票文本与股票价格两种异源数据进行融合后,Credible Net 运用时间级注意力机制提取融合特征中的有价值信息。不同时间点的股票数据和文本信息对股票价格预测的影响程度是不同的。时间级注意力机制能够根据时间序列的特点,对不同时间点的融合特征进行加权处理,从而突出那些在特定时间对股票价格预测起关键作用的信息。例如,在公司发布重要公告的时间点,与之相关的股票数据和文本信息往往对股票价格的未来走势具有较大影响,时间级注意力机制能够捕捉到这些信息,并给予更高的权重。
为了更好地理解股票预测任务中的不确定性,使用高斯混合模型对神经网络的输出进行建模。股票市场存在许多不确定因素,如突发的政策变化、市场情绪的急剧波动等,这些因素导致股票价格预测结果存在一定的不确定性。高斯混合模型可以将神经网络的输出看作是多个高斯分布的混合,通过对这些高斯分布的参数估计,能够对股票预测的不确定性进行量化分析。这有助于投资者在做出投资决策时,不仅考虑股票价格的预测值,还能充分了解预测结果的不确定性程度,从而更加合理地制定投资策略。
2. 基于特征选择和不确定性量化的股票价格预测模型 Log Net
股票数据中常常存在异常数据,这些异常数据可能是由于数据采集错误、市场异常波动、公司突发重大事件等原因导致的。异常数据的存在会严重影响股票预测模型的准确性和稳定性。传统的股票预测模型往往没有充分考虑到异常数据的影响,直接将所有数据用于模型训练,导致模型学习到的股票特征不准确,进而降低了预测性能。
为了解决这一问题,首先使用极端决策树模型对股票的历史价格交易数据进行特征选择。极端决策树是一种基于决策树的特征选择方法,它能够在大量的特征中快速筛选出对目标变量(如股票价格)具有重要影响的特征。通过极端决策树模型,可以去除那些与股票价格相关性较低的特征,减少数据中的噪声和冗余信息,从而提高模型的训练效率和预测准确性。例如,在股票历史价格交易数据中,可能存在一些与股票价格波动关系不大的交易细节,如某些特定时间段内的小额交易记录等,极端决策树可以将这些特征排除在外。
将不确定性量化的思想引入到股票预测模型中,进一步提升模型的准确性。与 Credible Net 模型类似,Log Net 模型也使用高斯混合模型对神经网络的输出的 logit 进行建模。通过对神经网络输出的不确定性分析,可以判断出每个预测结果的可靠性程度。在进行股票预测时,选取具有较低不确定性的股票数据进行分析,能够有效避免异常数据对预测结果的干扰。因为低不确定性的数据往往更能反映股票市场的真实情况,基于这些数据进行预测可以得到更可靠的结果。
在预测模型的选择上,Log Net 采用了 SDENet 模型。SDENet 模型具有较强的特征提取能力,能够从低不确定性的股票特征中有效地提取信息。它通过特殊的网络结构设计,能够对股票数据中的复杂模式和规律进行学习和挖掘。例如,SDENet 模型可以捕捉到股票价格与宏观经济指标、行业趋势等因素之间的非线性关系,从而更准确地预测股票价格的未来走势。通过对比实验发现,Log Net 相比于其他股票预测神经网络模型,在预测准确性、稳定性等方面都有显著的提升。这表明基于特征选择和不确定性量化的方法能够有效地提高股票预测模型的性能。
3. 基于情感分析和 Transformer 的股价预测模型 Sen Trans Net
社交媒体的普及使得大量的股票相关信息得以快速传播,其中包含了投资者的情感和观点。这些情感信息对股票价格的波动有着重要的影响。例如,当投资者普遍对某只股票持乐观态度时,可能会引发更多的买入行为,从而推动股票价格上涨;反之,当投资者情绪悲观时,可能会导致股票抛售,使价格下跌。因此,充分利用社交媒体上的情感信息,对于提高股票价格预测的准确性具有重要意义。
Sen Trans Net 模型首先对从推特等社交媒体获得的非结构化数据进行情感分析,构建情感分数。情感分析是自然语言处理领域的一项重要任务,它旨在判断文本中所表达的情感倾向,如正面、负面或中性。在构建情感分数时,Sen Trans Net 模型使用了先进的自然语言处理技术,如词向量模型、深度学习分类器等。通过对推特文本中的词汇、语法结构、语义等信息进行分析,判断每条推文的情感倾向,并根据情感倾向的强度赋予相应的分数。例如,一条表达强烈看好某只股票的推文可能会被赋予较高的正面情感分数,而一条对股票前景表示担忧的推文则会被赋予负面情感分数。
将情感得分与股票的历史价格指标进行融合。股票的历史价格指标,如开盘价、收盘价、最高价、最低价、成交量等,是反映股票市场走势的重要信息。而情感得分则从投资者情绪的角度为股票价格预测提供了新的视角。将这两者融合起来,可以更全面地描述股票市场的状态。例如,当股票历史价格呈现上涨趋势,同时社交媒体上的情感得分也为正面时,这可能预示着股票价格在未来一段时间内继续上涨的可能性较大;反之,如果历史价格下跌,且情感得分负面,那么股票价格可能会进一步下跌。
在股票预测模型的选取上,Sen Trans Net 利用 Transformer 模型对股票融合数据进行有效分析。Transformer 模型是近年来在自然语言处理和机器学习领域广泛应用的一种强大模型,它具有出色的序列建模能力和全局注意力机制。在处理股票融合数据时,Transformer 模型能够充分捕捉到数据中的时间序列特征和不同特征之间的关联关系。例如,它可以同时关注股票历史价格的长期趋势和短期波动,以及情感得分在不同时间点的变化对股票价格的影响。通过这种方式,Transformer 模型能够对股票融合数据进行深入分析,提取出更有价值的信息,进而提升股票价格的预测性能。
为了验证 Sen Trans Net 模型的有效性和稳定性,选取了四个不同行业中四支不同的股票个股作为数据集。这四支股票分别来自不同的行业,具有不同的市场特点和价格波动规律。通过在这些数据集上进行实验,结果表明 Sen Trans Net 股票预测模型对于股票预测任务具有较好的预测性能和鲁棒性。无论是在股票价格上涨还是下跌的市场环境中,Sen Trans Net 模型都能够相对准确地预测股票价格的走势,并且在面对不同类型的股票数据时,都能保持较为稳定的预测性能。这说明 Sen Trans Net 模型能够有效地利用情感分析和 Transformer 模型的优势,对股票价格进行准确预测。
import tensorflow as tf
from tensorflow.keras.layers import Input, Dense, LSTM, Dropout, Multiply, Activation
from sklearn.ensemble import ExtraTreesClassifier
import nltk
from nltk.sentiment import SentimentIntensityAnalyzer
nltk.download('vader_lexicon')
# Credible Net模型中的注意力机制实现
class Attention(tf.keras.layers.Layer):
def __init__(self, units):
super(Attention, self).__init__()
self.W1 = Dense(units)
self.W2 = Dense(units)
self.V = Dense(1)
def call(self, query, values):
# query shape: (batch_size, hidden_size)
# values shape: (batch_size, max_length, hidden_size)
hidden_with_time_axis = tf.expand_dims(query, 1)
score = self.V(tf.nn.tanh(
self.W1(values) + self.W2(hidden_with_time_axis)))
attention_weights = tf.nn.softmax(score, axis=1)
context_vector = attention_weights * values
context_vector = tf.reduce_sum(context_vector, axis=1)
return context_vector, attention_weights
# Log Net模型中的特征选择
def feature_selection(X, y):
etc = ExtraTreesClassifier()
etc.fit(X, y)
important_features = etc.feature_importances_ > 0.1
return X[:, important_features]
# SDENet模型简单构建
def build_sdenet(input_shape):
inputs = Input(shape=input_shape)
x = LSTM(64, return_sequences=True)(inputs)
x = Dropout(0.2)(x)
x = LSTM(32)(x)
x = Dense(16, activation='relu')(x)
outputs = Dense(1)(x)
model = tf.keras.Model(inputs=inputs, outputs=outputs)
model.compile(optimizer='adam', loss='mse')
return model
# Sen Trans Net模型中的情感分析
sia = SentimentIntensityAnalyzer()
def sentiment_analysis(text):
sentiment = sia.polarity_scores(text)
return sentiment['compound']
# Transformer模型简单构建(这里为简化示例,实际应用更复杂)
class TransformerBlock(tf.keras.layers.Layer):
def __init__(self, embed_dim, num_heads, ff_dim, rate=0.1):
super(TransformerBlock, self).__init__()
self.att = tf.keras.layers.MultiHeadAttention(num_heads=num_heads, key_dim=embed_dim)
self.ffn = tf.keras.Sequential([
Dense(ff_dim, activation='relu'),
Dense(embed_dim),
])
self.layernorm1 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
self.dropout1 = tf.keras.layers.Dropout(rate)
self.dropout2 = tf.keras.layers.Dropout(rate)
def call(self, inputs, training):
attn_output = self.att(inputs, inputs)
attn_output = self.dropout1(attn_output, training=training)
out1 = self.layernorm1(inputs + attn_output)
ffn_output = self.ffn(out1)
ffn_output = self.dropout2(ffn_output, training=training)
return self.layernorm2(out1 + ffn_output)
def build_sentransnet(input_shape):
inputs = Input(shape=input_shape)
x = TransformerBlock(64, 8, 256)(inputs)
x = Dense(32, activation='relu')(x)
outputs = Dense(1)(x)
model = tf.keras.Model(inputs=inputs, outputs=outputs)
model.compile(optimizer='adam', loss='mse')
return model