
✅ 博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。
✅ 具体问题可以私信或扫描文章底部二维码。
(1) 多源图像融合算法的设计与优化: 在现代数据密集型环境中,多源图像融合技术是提升数据利用率和信息表达质量的关键手段之一。本文针对多源图像融合,尤其是红外与可见光图像的融合,进行了系统性的研究。红外图像和可见光图像来源不同,分别具有显著的热辐射信息和细节丰富的视觉信息,因此将这两种图像融合可以更好地提升对场景的认知能力。本文基于引导滤波技术,提出了一种结合各向异性扩散和快速引导滤波的融合方法。首先,利用各向异性扩散算法提取红外图像和可见光图像的基础层与细节层,从而有效保留图像的主要结构信息。随后,采用边窗高斯滤波与快速引导滤波来计算细节层和基础层的融合权重,确保融合过程中不同特征的优化处理。最后,通过加法重建的方式将融合后的细节层和基础层进行重组,从而生成最终的融合图像。这种方法能够在融合过程中保持图像的细节清晰度,同时增强热信息的表达效果。在TNO数据集上的实验结果表明,该算法在多项指标上优于现有方法,尤其是在标准差(STD)、平均梯度(AG)、空间频率(SF)和信息熵(EN)等指标上均有显著提升。
(2) 深度学习与跨域融合的改进算法: 随着深度学习技术的不断发展,基于神经网络的图像融合方法在提升融合质量方面表现出较大的优势。本文在Swin Transformer融合框架的基础上,对红外与可见光图像的融合进行了改进,提出了一种结合跨域融合与范数优化的深度学习融合算法。具体而言,本文利用范数优化生成预融合图像,并通过ConvNeXt网络提取预融合图像的深度特征,以保留更多的细节纹理信息。这种改进的网络架构能够更好地适应红外与可见光图像的异构性,减少传统方法在融合过程中常见的细节损失问题。此外,本文对网络的损失函数进行了优化,以减少伪影的生成,使融合图像更加自然和清晰。在TNO数据集上的实验结果表明,本文提出的改进算法在多项指标上显著优于现有深度学习方法,包括MS-SSIM、平均梯度(AG)、空间频率(SF)和相关系数(CC)等,并在减少伪影信息的NAB/F指标上表现出极大的优势,优化效果达到26.3%。此外,通过对预融合图像和损失函数进行消融实验,进一步验证了所提出改进方案的有效性。
(3) 算法的硬件加速实现与实时性优化: 多源图像融合算法的工程化应用通常面临着实时性和计算资源的限制问题,为了解决这一瓶颈,本文针对基于各向异性扩散与快速引导滤波的融合算法进行了硬件优化加速设计。具体来说,本文利用FPGA的并行计算和流水线设计特性,对融合算法的关键步骤进行了优化。FPGA(现场可编程门阵列)在图像处理中的优势在于其可编程性与高效的硬件资源管理,能够实现图像融合算法的并行化加速处理。本文通过Verilog-HDL语言实现了算法的逻辑设计,并利用ModelSim对设计进行仿真和验证。结果显示,优化后的算法在计算效率上得到了大幅提升,与基于Matlab的传统实现相比,计算时间从原来的1559.42ms大幅降低至19.48ms,这意味着该设计能够满足实时应用的需求。此外,本文开发了一套基于FPGA的图像融合硬件系统,能够在保持融合质量的前提下,大幅度减少计算时延,从而为实际应用场景(如军事目标检测、安防监控等)提供了强有力的支持。结合软硬件联合优化的策略,使得本文设计的融合算法在复杂环境中表现出优异的性能,既满足了精确融合的要求,也实现了实时响应的目标。
% MATLAB代码:多源图像融合算法的实现
clc;
clear;
close all;
% 参数设置
num_iterations = 100; % 最大迭代次数
filter_size = [5, 5]; % 滤波器大小
% 读取图像
infrared_image = imread('infrared_image.jpg');
visible_image = imread('visible_image.jpg');
% 预处理
infrared_image = im2double(infrared_image);
visible_image = im2double(visible_image);
% 各向异性扩散提取基础层与细节层
[infrared_base, infrared_detail] = anisotropic_diffusion(infrared_image, num_iterations);
[visible_base, visible_detail] = anisotropic_diffusion(visible_image, num_iterations);
% 基础层融合 - 使用快速引导滤波
base_weight = fast_guided_filter(visible_base, infrared_base, filter_size);
fused_base = base_weight .* infrared_base + (1 - base_weight) .* visible_base;
% 细节层融合 - 使用边窗高斯滤波
detail_weight = edge_window_gaussian_filter(visible_detail, infrared_detail, filter_size);
fused_detail = detail_weight .* infrared_detail + (1 - detail_weight) .* visible_detail;
% 图像融合重建
fused_image = fused_base + fused_detail;
% 显示结果
figure;
subplot(2,2,1); imshow(infrared_image); title('Infrared Image');
subplot(2,2,2); imshow(visible_image); title('Visible Image');
subplot(2,2,3); imshow(fused_image); title('Fused Image');
% 保存融合后的图像
imwrite(fused_image, 'fused_image.jpg');
% 各向异性扩散函数
function [base, detail] = anisotropic_diffusion(image, num_iterations)
base = image;
for i = 1:num_iterations
% 计算梯度
[grad_x, grad_y] = gradient(base);
magnitude = sqrt(grad_x.^2 + grad_y.^2);
% 各向异性扩散
diffusion_coefficient = exp(-magnitude);
base = base + divergence(diffusion_coefficient .* grad_x, diffusion_coefficient .* grad_y);
end
detail = image - base;
end
% 快速引导滤波函数
function weight = fast_guided_filter(guide, source, filter_size)
% 滤波过程
mean_guide = imfilter(guide, fspecial('average', filter_size));
mean_source = imfilter(source, fspecial('average', filter_size));
corr_guide = imfilter(guide .* guide, fspecial('average', filter_size));
corr_gs = imfilter(guide .* source, fspecial('average', filter_size));
% 计算权重
var_guide = corr_guide - mean_guide .* mean_guide;
a = (corr_gs - mean_guide .* mean_source) ./ (var_guide + 1e-6);
b = mean_source - a .* mean_guide;
mean_a = imfilter(a, fspecial('average', filter_size));
mean_b = imfilter(b, fspecial('average', filter_size));
weight = mean_a .* guide + mean_b;
end
% 边窗高斯滤波函数
function weight = edge_window_gaussian_filter(detail1, detail2, filter_size)
% 计算权重
weight1 = imgaussfilt(detail1, filter_size(1));
weight2 = imgaussfilt(detail2, filter_size(2));
weight = weight1 ./ (weight1 + weight2 + 1e-6);
end


被折叠的 条评论
为什么被折叠?



