✅ 博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。
✅ 具体问题可以私信或扫描文章底部二维码。
(1)高维多目标优化算法的提出与原理
- 在众多工程实践和科学问题中,常常需要同时优化多个相互冲突的目标函数。对于高维多目标优化问题(目标函数数量较多,如超过三个),传统方法面临挑战。一方面,随着目标空间维度增加,搜索最优解集变得更加困难,需要更高效的搜索策略。另一方面,算法需要同时考虑收敛性(使解尽可能接近真实的最优解集)和多样性(使得到的解集在目标空间中分布广泛)。
- 性能指标非支配排序辅助的高维多目标优化算法:该算法提出了用于判断收敛性和多样性的性能指标。对于收敛性指标,可能衡量个体到已知最优解集的距离或与理想点的接近程度等。例如,计算个体与参考点(可以是理论上的最优解或已知的较好解)的欧氏距离,距离越小表示收敛性越好。对于多样性指标,可能考虑个体在目标空间中的分布均匀程度或分布范围等。比如,通过计算个体之间的间距或分布熵来衡量多样性。然后,基于这两个指标对个体进行非支配排序,综合考虑个体的收敛性和多样性来选择下一代父代种群。这样可以在搜索过程中引导算法在追求收敛到最优解集的同时,保持解的多样性,避免算法陷入局部最优或得到过于集中的解集。
- 分解框架下任选性能指标辅助的多目标优化算法:在分解框架中,将多目标优化问题分解为多个子问题,每个子问题对应一个参考向量。对于每个参考向量,任选一个性能指标(可以是收敛性指标或多样性指标)来引导下一代父代种群的选择。例如,对于某个子问题对应的参考向量,选择多样性指标来重点关注该子问题解的分布情况,确保在该方向上搜索到的解具有较好的多样性。通过这种方式,不同的子问题可以根据自身特点和需求选择合适的性能指标,从而更有针对性地进行搜索,提高算法在高维多目标优化问题上的求解效果。在高达 30 个目标的 DTLZ 和 MaF 测试函数上进行实验,结果表明这两种算法在求解高维多目标优化问题上是有效的,能够找到具有较好收敛性和多样性的解集,为解决实际问题中的高维多目标优化提供了可行的方法。
(2)昂贵高维多目标优化算法的研究与创新 - 对于昂贵高维多目标优化问题,即优化过程中目标函数的评估需要耗费较高费用或大量时间(如物理实验、高精度仿真等),直接使用进化算法求解变得不现实。因此,引入代理模型是一种常用的辅助方法,但也带来了新的挑战。随着目标维度增加,一个目标函数的估值错误可能导致算法搜索方向偏离正确方向,而且每个目标函数的评价耗费可能不同。
- 性能指标估值辅助的昂贵高维多目标优化算法:首先,对每个历史数据计算其多样性和收敛性性能。这些性能指标作为训练多样性性能指标代理模型和收敛性性能指标代理模型的数据样本。通过建立代理模型,可以在不进行实际昂贵评估的情况下,对个体的性能进行预测。然后,通过对多样性指标代理模型和收敛性指标代理模型的多目标搜索和填充采样选择来实现对昂贵高维多目标优化问题的求解。在多目标搜索中,同时考虑多样性和收敛性的优化,寻找在代理模型预测下具有较好综合性能的个体。填充采样选择则是根据一定的策略(如基于预测误差或不确定性)选择一些个体进行真实的目标函数评估,以更新代理模型和搜索进程。实验结果表明,该方法既能有效地降低算法的计算复杂度,减少实际昂贵评估的次数,又可以降低因过多依赖不准确的代理模型而引导搜索偏离正确方向的概率,在保证求解质量的同时提高了算法的效率。
- 基于估值不确定度排序顺序的昂贵高维多目标优化算法:提出使用估值不确定度排序顺序均值来表示个体的不确定度信息。在算法运行过程中,对于每个个体,计算其目标函数估值的不确定度。不确定度可以通过多种方式计算,例如基于多次代理模型预测的方差或基于模型的置信区间等。然后,根据不确定度对个体进行排序,将不确定度较低的个体优先用于使用真实目标函数评价的个体选择。这样做的目的是在资源有限的情况下,更有针对性地选择那些不确定性较大的个体进行真实评估,以减少不确定性对搜索过程的影响,提高算法的准确性和稳定性。通过在 DTLZ 和 MaF 测试函数以及汽车侧面碰撞实验上的实验结果表明,该方法在资源有限的情况下能够有效求解昂贵高维多目标优化问题,为实际工程中的昂贵优化问题提供了一种有效的解决方案。
(3)异构昂贵高维多目标优化算法的改进与优势 - 异构昂贵高维多目标优化问题中,不同目标函数的评价耗费不仅高,而且各不相同,这增加了问题的复杂性和求解难度。
- 基于异步采样的昂贵高维多目标优化算法:针对每个目标函数,根据其和最廉价目标函数之间的成本耗费比值来确定当前代是否对其进行真实计算。例如,如果一个目标函数的评价成本是最廉价目标函数的若干倍,那么在算法运行过程中需要更谨慎地决定何时对其进行真实评估。当需要真实计算时,任选估值不确定度最大或者估值不确定度最小作为进行该目标函数上真实评价的个体选择标准。选择估值不确定度最大的个体进行真实评估,可以更快速地降低该目标函数的不确定性,引导算法更准确地搜索该目标方向上的最优解。而选择估值不确定度最小的个体进行真实评估,则可以对当前搜索结果进行验证和微调,确保算法在该目标上的稳定性。通过这种方式,算法能够根据不同目标函数的特点和成本,灵活地进行采样和评估,更好地平衡计算资源的利用和搜索效果的提升。实验结果表明,该方法相比于基于同步采样的昂贵高维多目标优化算法,具有更好的求解性能,能够在更合理地利用资源的情况下,找到更优的解集,为解决异构昂贵高维多目标优化问题提供了一种有效的创新方法。
% 定义问题参数
num_objectives = 5; % 目标函数数量(假设为 5 个高维目标)
population_size = 100; % 种群大小
max_iterations = 500; % 最大迭代次数
% 随机生成初始种群
population = rand(population_size, num_objectives);
% 定义目标函数(这里为简单示例函数,实际需根据具体问题定义)
function objectives = example_objective_functions(x)
f1 = sum(x.^2);
f2 = sum((x - 0.5).^2);
f3 = sum((x - 1).^2);
f4 = sum((x + 0.5).^2);
f5 = sum((x + 1).^2);
objectives = [f1, f2, f3, f4, f5];
end
% 迭代优化
for iteration = 1:max_iterations
% 计算种群个体的目标函数值
objective_values = zeros(population_size, num_objectives);
for i = 1:population_size
objective_values(i, :) = example_objective_functions(population(i, :));
end
% 非支配排序(简单示例,这里可根据具体的非支配排序算法实现)
non_dominated_indices = [];
for i = 1:population_size
is_dominated = false;
for j = 1:population_size
if all(objective_values(j, :) <= objective_values(i, :)) && any(objective_values(j, :) < objective_values(i, :)))
is_dominated = true;
break;
end
end
if ~is_dominated
non_dominated_indices = [non_dominated_indices, i];
end
end
non_dominated_population = population(non_dominated_indices, :);
% 多样性计算(示例,可根据具体的多样性指标计算方法实现)
diversity_values = zeros(size(non_dominated_population, 1), 1);
for i = 1:size(non_dominated_population, 1)
distances = pdist2(non_dominated_population(i, :), non_dominated_population);
diversity_values(i) = mean(distances);
end
% 选择下一代父代种群(这里简单选择非支配个体中多样性较好的一部分)
sorted_diversity_indices = sort(diversity_values, 'descend');
selected_indices = non_dominated_indices(sorted_diversity_indices(1:population_size/2));
parent_population = population(selected_indices, :);
% 交叉和变异操作(示例,简单的交叉和变异方法)
offspring_population = zeros(population_size, num_objectives);
for i = 1:population_size/2
% 交叉
parent1 = parent_population(i, :);
parent2 = parent_population(i + population_size/2, :);
crossover_point = randi([1, num_objectives - 1]);
offspring1 = [parent1(1:crossover_point), parent2(crossover_point + 1:end)];
offspring2 = [parent2(1:crossover_point), parent1(crossover_point + 1:end)];
% 变异
mutation_rate = 0.1; % 变异概率
for j = 1:num_objectives
if rand() < mutation_rate
offspring1(j) = rand();
end
if rand() < mutation_rate
offspring2(j) = rand();
end
end
offspring_population(2 * i - 1, :) = offspring1;
offspring_population(2 * i, :) = offspring2;
end
% 更新种群
population = offspring_population;
end
% 输出最终结果
disp('最终种群的目标函数值:');
disp(objective_values);