轮胎滚动阻力柔性环模型的柔性变形与阻尼特性辨识研究【附数据】

博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。

 ✅ 具体问题可以私信或扫描文章底部二维码。


(1)轮胎柔性环变形模型的建立与相关分析

轮胎作为汽车与路面接触的关键部件,其力学特性意义重大,而稳态滚动阻力是重点研究方面。在此部分先是建立了轮胎柔性环变形模型,这个模型综合考虑了轮胎任意垂向载荷压力分布、轮胎与路面滚动接触、胎体柔性变形以及轮胎滚动能耗等多方面因素。通过利用耗散系统的哈密尔顿原理推导了轮胎柔性环拉格朗日方程,进而建立起轮胎柔性环动力学方程。接着运用模态展开法对分布载荷轮胎柔性环变形模型降阶求解,以此来简化模型以便后续的分析操作。为了获取模型中各向刚度和阻尼系数等关键参数,还专门搭建了轮胎实验模态装置,通过该装置进行相关参数的辨识工作。凭借这个完善的模型,能够很好地展现平面内轮胎滚动变形特征以及其变化规律,并且通过仿真分析,详细研究了在载荷、速度、充气压力以及切向力等多工况下滚动轮胎径向变形和切向变形特征,为后续深入探究轮胎的各种性能奠定了扎实的理论与数据基础。

(2)轮胎柔性环滚动阻力理论模型的构建及相关机理探究

基于前面所建立的轮胎柔性环变形模型,进一步构建轮胎柔性环滚动阻力理论模型。在这个过程中,推导了轮胎稳态滚动阻力中的临界阻尼和临界速度的解析表达式,同时建立起考虑轮胎前后接触角的滚动模型,该模型具备预测轮胎高速行驶下驻波现象的能力,这对于了解轮胎在高速运行时的特殊状态十分关键。通过这个理论模型,深入揭示了轮胎稳态滚动阻力随速度增加发生突变的机理,让我们知晓速度因素是如何对滚动阻力产生重大影响的。而且还通过仿真分析,仔细研究了轮胎柔性环滚动阻力随载荷、速度以及充气压力的变化规律,以及滚动轮胎前后接触角变化规律,更进一步揭示了阻尼参数对轮胎稳态滚动阻力所起到的作用机理,使得我们对影响轮胎滚动阻力的各因素及其相互关系有了更为清晰且深入的认识,有助于后续针对性地对轮胎性能进行优化与改进。

(3)单点激励单点拾振频响函数轮胎滚柔性环模态参数辨识方法的提出及应用

提出了单点激励单点拾振频响函数轮胎滚柔性环模态参数辨识方法,这是一种创新的用于轮胎性能分析的手段。先是利用轮胎柔性环模态坐标的动力学方程,建立起轮胎单自由度与多自由模态坐标动力学方程,借此解释系统振动迟滞阻尼产生能量损耗的机理,同时建立起系统粘性阻尼和结构阻尼的关系,完善了对轮胎内部能量损耗原理层面的认知。随后利用半功率带宽法分析轮胎频响函数,并且基于应变模态法原理提出了轮胎模态损耗因子模型,从多个角度对轮胎的模态特性进行量化分析。为了将该方法应用于实际的测试中,搭建了基于此方法的轮胎模态测试装置,还开展了单 PVDF(聚偏氟乙烯)压电薄膜传感器拾振和力锤单点激振的轮胎模态实验方法,利用这种创新的实验方法,能够快速地对轮胎稳态滚动阻力进行分析,进而实现一种快速、高效、经济的轮胎滚动阻力评价机制,通过实际的实验操作证明了该方法在轮胎滚动阻力评价方面的可行性,为轮胎性能的便捷检测提供了新的途径。

(4)轮胎胎内传感测试系统及相关实验验证工作

为了能够获取轮胎滚动过程中最为真实的变形特征以及稳态滚动阻力实验数据,并且验证之前所建立的轮胎柔性环滚动阻力模型的准确性,专门建立了轮胎胎内传感测试系统以及轮胎滚动接触印迹长度与加速度之间的解算方法。在此基础上,实施了搭载胎内传感测试系统的整车多工况道路实验,在实验过程中成功解决了滚动轮胎径向加速度和切向加速度与重力加速度的耦合问题,这对于准确获取轮胎相关加速度数据有着重要意义。通过对实验数据的深入研究,分析了多工况下轮胎接触印迹内的滚动径向和切向加速度特征,进一步计算出轮胎滚动过程中的径向和切向变形特征以及轮胎滚动过程中能量功率分布特征,通过这些实际的数据来验证所建立的轮胎柔性环变形模型的正确性,从实践层面证明了理论模型的可靠性。此外,还研究了轮胎稳态滚动阻力实验方法及特点,开展了转鼓式轮胎滚动阻力实验平台精度分析,针对涵盖载荷、速度及充气压力等多工况轮胎稳态滚动阻力进行实验分析,验证了轮胎柔性环稳态滚动阻力模型,并且建立了轮胎滚动阻力与充气压力相关经验模型,同样通过实验对该模型进行了有效的验证,不断完善轮胎滚动阻力相关的理论与实践体系。

(5)轮胎滚动能耗扩展工况研究

开展了涉及行驶时间、定位角(侧偏角与侧倾角)以及磨损等行驶工况的轮胎滚动能耗扩展工况研究,拓宽了对轮胎滚动阻力研究的工况范围。先是从轮胎的材料角度出发,分析了胎面橡胶能量损耗特性,通过压缩、碰撞回弹及 DMA 实验等多种方式分析橡胶材料的粘弹滞后性能,探究材料能量损耗性能与轮胎滚动阻力之间的内在联系,明确材料层面是如何影响轮胎滚动阻力的。接着研究了轮胎滚动阻力随时间工况的变化规律,提出了轮胎滚动阻力与转动时间有关的经验模型以及轮胎温度与测试时间相关经验模型,并通过实验对这些模型进行验证,让模型具备预测轮胎滚动阻力随时间变化的能力,为了解轮胎长时间使用过程中滚动阻力的变化情况提供了理论依据。然后推导了考虑轮胎侧偏角和侧倾角的轮胎滚动阻力模型,并通过实验验证了该模型的正确性,加深对不同定位角工况下轮胎滚动阻力变化的掌握。最后研究了磨损工况对轮胎滚动阻力的影响,定量分析了轮胎磨损与滚动阻力系数的关系,全面且深入地探究了多种复杂工况下轮胎滚动阻力的变化特点及影响因素,进一步完善了轮胎滚动阻力在不同工况下的研究体系。

 

# 导入相关数学计算库
import numpy as np

# 定义一些常量,模拟轮胎相关参数(这里只是示例赋值,实际要根据真实参数确定)
tire_stiffness = 100  # 轮胎刚度
damping_coefficient = 5  # 阻尼系数

# 模拟不同的载荷情况,这里简单设置几个载荷值
loads = np.array([10, 20, 30])  # 单位可以根据实际情况设定,比如 N

# 定义函数用于计算轮胎变形(简单示意,实际要更复杂的物理模型计算)
def calculate_deformation(load):
    deformation = load / tire_stiffness
    return deformation

# 循环计算不同载荷下的轮胎变形
for load in loads:
    deformation_value = calculate_deformation(load)
    print(f"在载荷为 {load} 时,轮胎变形为 {deformation_value}")

# 以下可以继续添加更多关于结合速度、充气压力等多工况的计算逻辑,比如再嵌套循环等
# 例如添加速度因素,模拟不同速度下的变形情况变化
speeds = np.array([10, 20, 30])  # 速度单位假设为 km/h
for load in loads:
    for speed in speeds:
        # 这里可以添加更复杂的结合速度的变形计算逻辑,这里简单示意
        deformation_value = calculate_deformation(load) * (1 + speed / 100)
        print(f"在载荷为 {load} ,速度为 {speed} 时,轮胎变形为 {deformation_value}")

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值