智能汽车个性化辅助驾驶中的动态规划与深度强化学习控制分配方法【附数据】

博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。

 ✅ 具体问题可以私信或扫描文章底部二维码。


(1)驾驶习性分析与数据处理

  • 搭建驾驶人实车驾驶数据采集平台,采集大量不同驾驶习性驾驶人的数据。运用高斯混合模型对驾驶数据进行统计建模,通过最大期望迭代算法估计模型参数,获取各驾驶人驾驶习性的概率表示。例如,对于加速、减速、转向等操作数据进行综合建模,以全面反映驾驶人的驾驶风格。
  • 引入 KL 散度计算不同高斯混合模型间的分布差异性,以此作为驾驶习性区分的量化表征。这克服了传统欧氏距离衡量驾驶习性差异性的局限,能更精准地捕捉不同驾驶人在整体驾驶行为模式上的差异。比如,一些驾驶人可能在高速行驶时加速较为平缓,而另一些则较为激进,KL 散度能够很好地体现这种差异,进而实现驾驶人驾驶习性的非监督聚类,为后续辅助驾驶策略设计提供不同类型驾驶习性的数据基础。
  • 探究各状态变量与驾驶人换道意图之间的非线性关系,构建基于驾驶数据学习的驾驶人换道意图识别算法。分析如车速、与邻车距离、转向灯信号时长等状态变量对换道意图的影响,为准确识别换道意图提供依据,从而在辅助驾驶系统中能提前做出合理响应。

(2)纵向辅助驾驶策略设计

  • 基于自适应动态规划算法构建纵向辅助驾驶决策算法,充分考虑驾驶人驾驶习性和前车运动随机性特点。该策略涵盖速度控制和跟随控制两种工作模式。
  • 在速度控制模式方面,提出指数式车速调节过程模型。依据驾驶人真实驾驶数据,分析两种工作模式间的切换特点。例如,当道路状况良好且车流量较小时,驾驶人可能倾向于速度控制模式,此时系统根据指数式模型平稳调节车速,避免车速突变带来的不适。
  • 对于跟随控制模式,深入分析驾驶人纵向跟随加速度决策与车辆运动状态之间的映射关系,采用逆向强化学习对其建模。假设驾驶人纵向加速度决策服从玻尔兹曼分布,运用最大似然方法得出车辆纵向跟随加速度决策值函数表达。同时,建立前方目标车加速度决策无向概率图模型,获取前方目标车加速度变化分布函数,以构建符合真实交通环境的车辆纵向运动环境模型。借助神经网络的 Actor 模块和 Critic 模块,与交通环境模型交互迭代,得到主车加速度决策策略,实现跟随控制模式下的最优决策。比如在跟车过程中,根据前车的加速、减速情况以及自身驾驶习性,系统能够智能地调整跟车距离和车速,确保行车安全与舒适性。

(3)侧向辅助驾驶策略设计

  • 建立基于车辆运动轨迹预测和深度强化学习的个性化侧向辅助驾驶决策算法。运用动态贝叶斯网络对车辆运动过程中各随机变量间的依赖关系建模,得到融合驾驶人操作随机性特征和车辆动力学模型的车辆运动有向概率图模型,通过近似推理算法预测车辆在未来时域内的运动轨迹。例如,在弯道行驶时,综合考虑方向盘转角、车速、路面摩擦力等因素预测车辆的行驶轨迹。
  • 借助卷积神经网络的特征提取能力,在 CARLA 环境下构建基于驾驶数据学习的个性化驾驶人模型。利用变分自编码器提取驾驶图像特征,获取驾驶场景状态表示,基于深度强化学习构建车道保持侧向附加横摆角速度决策算法,通过深度强化学习算法与驾驶人模型的交互实现个性化车道保持决策策略,并在 CARLA 中不同场景下进行测试验证其有效性。比如在不同曲率弯道、不同路况下,系统能根据驾驶人的习惯和车辆的实时状态,精准地控制车辆的侧向运动,保持在车道内稳定行驶。

(4)车辆纵侧向耦合底盘集成控制

  • 基于约束优化车辆控制分配,建立上层纵侧向辅助驾驶策略与车辆动力学控制之间的协调策略。由于车辆纵侧向运动存在动态耦合特征,上层辅助驾驶策略可能产生矛盾并导致执行机构冲突。采用多目标优化控制方法构建基于数值优化的车辆底盘集成控制策略。
  • 利用循环神经网络建立期望控制预测模型,结合车辆控制模型和车辆执行机构动态特性模型建立基于优化分配的控制算法,并通过仿真测试验证其有效性和实时性。例如,在紧急避让场景中,既要考虑纵向的减速制动,又要兼顾侧向的转向控制,该协调策略能够确保车辆底盘各执行机构协同工作,避免出现失控或不协调的情况,使车辆平稳、安全地完成避让动作。

 

import numpy as np
import pandas as pd
from sklearn.mixture import GaussianMixture
from scipy.stats import entropy

# 假设这是读取的驾驶数据,包含车速、加速度等信息
data = pd.read_csv('driving_data.csv')

# 提取相关列数据
speed = data['speed'].values
acceleration = data['acceleration'].values

# 将数据组合成特征矩阵
X = np.column_stack((speed, acceleration))

# 使用高斯混合模型拟合数据
gmm = GaussianMixture(n_components=3)  # 假设分为 3 种驾驶习性类型
gmm.fit(X)

# 获取各成分的概率分布
probabilities = gmm.predict_proba(X)

# 计算不同驾驶习性模型间的 KL 散度示例(这里简单对比前两个成分)
kl_divergence = entropy(gmm.means_[0], gmm.means_[1])

# 打印结果
print("各成分概率分布:", probabilities)
print("KL 散度:", kl_divergence)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值