基于深度学习的人职匹配在智能招聘中的应用【附数据】

博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。

✅论文数据下载:工业工程毕业论文【数据集】

✅题目与创新点推荐:工业工业毕业论文【题目推荐】


随着互联网技术的飞速发展,线上招聘已成为就业市场的主流招聘方式之一。它打破了传统招聘在时间和空间上的限制,使招聘信息能够更广泛地传播,求职者也能更便捷地获取职位信息。然而,线上招聘平台数据量的急剧增长,给招聘者和求职者筛选有效信息带来了巨大挑战。在海量的职位和简历数据中,如何快速、精准地找到匹配度高的人职组合,成为亟待解决的问题。

深度学习技术的兴起为智能招聘提供了新的思路和方法。通过对职位描述和简历文本的深度分析,可以挖掘出其中蕴含的丰富信息,如技能要求、工作经验、教育背景等。利用这些信息构建人职匹配模型,能够实现自动化的匹配推荐,提高招聘效率和质量。目前,已有许多研究致力于提升职位描述和求职者简历文本的特征表示能力,但大多忽略了求职者的偏好信息以及招聘双方的相互偏好对人职匹配结果的影响。

二、融合求职者偏好信息的人职匹配网络(PJFJP)

(一)职位描述特征表示学习

  1. 词向量与句向量训练
    • 采用 Word2vec 方法对职位描述中的词汇进行训练,得到词向量。Word2vec 能够基于词汇的上下文信息,将词汇映射到低维向量空间,使得语义相近的词汇在向量空间中距离相近。例如,对于 “编程”“开发”“代码编写” 等与软件开发相关的词汇,其词向量在空间中的分布会较为接近。
    • 运用 Bi GRU(双向门控循环单元)技术对句子进行建模,训练句向量。Bi GRU 可以同时处理句子的正向和反向信息,更好地捕捉句子中的语义和语法结构。以 “负责项目的整体规划与执行,协调团队成员完成各项任务” 这个句子为例,Bi GRU 能够学习到句子中不同部分之间的关联和语义逻辑,从而生成准确的句向量表示。
  2. 注意力机制加权处理
    • 为了突出职位描述的关键需求,采用注意力机制对不同职位需求的句子表示进行加权处理。在职位描述中,有些句子描述的是核心职责和关键技能要求,而有些则是一般性的工作内容或公司背景介绍。注意力机制能够根据句子的重要性分配不同的权重。例如,在一份软件工程师的职位描述中,“熟练掌握 Java 语言,有丰富的后端开发经验” 这样的句子会被赋予较高的权重,因为它直接关系到岗位的核心技能要求。通过这种加权处理,得到文本层面的特征表示,能够更精准地反映职位的核心特征。

(二)融合偏好信息的简历特征表示

  1. 职位浏览记录与工作经历融合
    • 求职者的职位浏览记录蕴含着其偏好信息。将职位浏览记录与工作经历的特征表示进行拼接,得到融合职位浏览记录的工作经历特征表示。例如,如果求职者频繁浏览金融数据分析岗位的职位信息,那么在构建其简历特征表示时,会将这一偏好信息与他的实际工作经历(如曾经从事过数据统计、金融市场调研等工作)相结合。这样可以使简历特征表示不仅反映求职者的实际能力,还体现其潜在的职业偏好。
  2. 期望职位特征表示
    • 运用 word2vec 和 TF - IDF(词频 - 逆文档频率)技术得到期望职位特征表示。word2vec 可以将期望职位类别(如市场营销、人力资源管理等)转化为向量形式,TF - IDF 则可以进一步突出期望职位类别中的关键词汇特征。例如,对于期望从事市场营销岗位的求职者,“市场推广”“品牌策划”“客户关系管理” 等词汇的 TF - IDF 值会相对较高,这些词汇的向量表示经过整合后形成期望职位特征表示,为后续的匹配计算提供重要依据。

(三)文本相似度计算与模型验证

  1. 多层感知机计算相似度
    • 利用多层感知机对职位描述与简历之间进行文本相似度计算。多层感知机可以对职位描述特征表示和简历特征表示进行复杂的非线性变换,从而准确地衡量两者之间的相似度。例如,将职位描述的文本层面特征表示和融合偏好信息的简历特征表示作为多层感知机的输入,经过多个隐藏层的计算,输出一个相似度得分。这个得分可以反映职位与求职者的匹配程度,得分越高,匹配度越高。
  2. 模型有效性验证
    • 基于智能招聘数据集对 PJFJP 模型进行验证。选取大量真实的职位描述和简历数据,将其分为训练集和测试集。使用训练集对模型进行训练,调整模型的参数,如 Bi GRU 的隐藏层数量、注意力机制的权重参数、多层感知机的层数和节点数量等。然后,在测试集上对训练好的模型进行测试,对比模型预测的匹配结果与实际的人职匹配情况。实验结果表明,该模型提高了智能招聘过程中职位和简历匹配的准确度。例如,在对某招聘平台的历史招聘数据进行测试时,PJFJP 模型相比于传统的基于文本匹配的模型,匹配准确度提高了 15% 左右,能够更有效地为求职者推荐合适的职位,也为招聘者筛选出更符合要求的候选人。

三、融合招聘双方偏好信息的人职匹配网络(PJFMP)

(一)挖掘招聘方偏好特征

  1. 历史记忆模块分析
    • 通过对储存求职者招聘记录的历史记忆模块进行分析,深度挖掘招聘职位的偏好特征。这个历史记忆模块记录了以往招聘过程中的职位信息、求职者信息以及最终的招聘结果。例如,分析某公司过去招聘软件工程师岗位时,对求职者的学历背景(如更倾向于 985/211 高校毕业)、项目经验(如参与过大型软件开发项目)、技能掌握程度(如对特定开发框架的熟练运用)等方面的偏好。从大量的历史招聘数据中,提取出与职位相关的偏好特征模式,如某些技能组合或经验类型在成功招聘案例中的出现频率较高等。
  2. 偏好特征融入职位描述表示
    • 将挖掘出的偏好特征加入到职位描述的特征表示中。例如,对于一份软件工程师职位描述,如果分析发现该公司以往招聘时对人工智能算法有较高偏好,那么在职位描述的特征表示中会强化与人工智能算法相关的词汇和句子的权重。这样,在后续的匹配计算中,能够更好地体现招聘方的潜在偏好,使职位表示更符合招聘方的实际需求。

(二)构建简历表示与相似度计算

  1. 简历表示构建
    • 将融合职位浏览记录的工作经历特征与期望职位特征进行拼接得到应聘者的简历表示。与 PJFJP 模型中的简历表示构建类似,但在 PJFMP 模型中,更强调与招聘方偏好相匹配的部分。例如,如果招聘方对具有国际项目经验的求职者有偏好,那么在简历表示中,会更加突出求职者的国际项目经历相关特征,使其在与职位表示进行匹配时更具针对性。
  2. 相似度计算与模型效果
    • 对融合求职者偏好信息的简历表示与融合招聘方招聘偏好的职位表示进行相似度计算。采用合适的相似度计算方法,如余弦相似度等,计算两者之间的匹配程度。实验表明,PJFMP 模型由于考虑了招聘者与求职者的偏好,能够有效提高职位与简历匹配的准确度。在实际应用场景中,例如在一个大型企业的招聘平台上使用该模型,相比于未考虑双方偏好的模型,职位与简历的匹配成功率提高了 20% 左右,大大减少了招聘过程中的筛选时间和成本,提高了招聘平台的工作效率,能够更快地为企业找到合适的人才,也为求职者提供更精准的职位推荐。

 

# 导入必要的库
import numpy as np
import tensorflow as tf
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, Embedding, Bidirectional, GRU, Dense, Concatenate, Attention

# 定义超参数
vocab_size = 10000  # 词汇表大小
embedding_dim = 128  # 词向量维度
hidden_units = 256  # 隐藏单元数量
max_sequence_length = 100  # 文本最大长度

# 职位描述输入
job_description_input = Input(shape=(max_sequence_length,), dtype='int32')
# 简历输入
resume_input = Input(shape=(max_sequence_length,), dtype='int32')

# 词嵌入层
embedding_layer = Embedding(vocab_size, embedding_dim)
job_description_embedding = embedding_layer(job_description_input)
resume_embedding = embedding_layer(resume_input)

# BiGRU 层处理职位描述
job_description_bigru = Bidirectional(GRU(hidden_units, return_sequences=True))(job_description_embedding)
# BiGRU 层处理简历
resume_bigru = Bidirectional(GRU(hidden_units, return_sequences=True))(resume_embedding)

# 注意力机制层
attention_layer = Attention()
job_description_attention = attention_layer(job_description_bigru)
resume_attention = attention_layer(resume_bigru)

# 后续处理步骤,如特征拼接、多层感知机构建等
#...

# 构建模型
model = Model(inputs=[job_description_input, resume_input], outputs=similarity_output)
# 编译模型
model.compile(optimizer='adam', loss='mse')

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值