如题,在caffe训练时,遇到这个特殊的数字之后,loss会一直就是这个数字。
网上虽然有很多针对这个问题调参的trick,但少有详细的分析,因此,有必要研究一下caffe的源代码。
softmax的公式为
其中x为softmax前一层的输出
softmax的loss计算公式也很简单,就是对softmax之后预测的概率做对数似然函数
其中y是label,若类别数为N,则y为N维。对于单label情况,N维中只有一维为1,其他为零,计算loss时仅需考虑label中非零那一维即可(实际使用中单label用一个数字记录)
此时
在softmax_loss_layer.cpp的原码中,就是由label的非零维直接计算loss的
loss -= log(std::max(prob_data[i * dim + label_value * inner_num_ + j],
Dtype(FLT_MIN)));
loss的最大值由FLT_MIN得到,FLT_MIN定义为1.17549435E-38F,这个数字的自然对数正好就是
-87.3356,算loss时需要取负值,结果就能了87.3356。
**这说明softmax计算得到概率值出现了零(由于float类型所能表示的最小数值是10−3810−38,比这个值还小的无法表示,只能是零)
而softmax是用指数函数计算的,指数函数的值都是大于零的。因此,我们有理由相信,计算过程中出现了float溢出等异常,出现了inf,nan等异常数值导致softmax输出为零
最后我们发现,当softmax之前的feature值过大时,由于softmax先求指数,会超出float数据范围,成为inf。inf与其他任何数值的和都是inf,softmax在做除法时任何正常范围的数值除以inf都会变为0。然后求loss时log一下就出现了87.3356这样的值。**
以下是模拟训练的loss代码,观察feature数值范围对loss的影响:
#include <iostream>
#include <math.h>
#include <float.h>
using namespace std;
int main()
{
float f[] = {100, 20};
cout << "feature: " << f[0] << ", " << f[1] << endl;
float f_exp[] = {expf(f[0]), expf(f[1])};
cout << "exp: " << f_exp[0] << ", " << f_exp[1] << endl;
float sum = f_exp[0] + f_exp[1];
cout << "sum: " << sum << endl;
float softmax[] = {f_exp[0]/sum, f_exp[1]/sum};
cout << "softmax: " << softmax[0] << ", " << softmax[1] << endl;
float loss[] = {-log(max(softmax[0], FLT_MIN)), -log(max(softmax[1], FLT_MIN))};
cout << "loss: " << loss[0] << ", " << loss[1] << endl;
return 0;
}
解决方法:
知道了原因,解决时就能对症下药。总体上看,softmax输入的feature由两部分计算得到:一部分是输入数据,另部分是各层权重参数。
1、观察数据中是否有异常样本或异常label导致数据读取异常
2、调小初始化权重,以便使softmax输入的feature尽可能变小
3、降低学习率,这样就能减小权重参数的波动范围,从而减小权重变大的可能性。这条也是网上出现较多的方法。
4、如果有BN(batch normalization)层,finetune时最好不要冻结BN的参数,否则数据分布不一致时很容易使输出值变的很大。