训练loss不下降原因集合

本文探讨了在深度学习中train loss和test loss的分析,包括loss不变的常见原因,如数据输入错误、网络结构不当、初始化权重问题等,并提供了相应的解决方案。通过对损失函数、梯度检验和训练过程的监控,可以有效地解决loss不下降的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

11年it研发经验,从一个会计转行为算法工程师,学过C#,c++,java,android,php,go,js,python,CNN神经网络,四千多篇博文,三千多篇原创,只为与你分享,共同成长,一起进步,关注我,给你分享更多干货知识!

目录

一,train loss与test loss结果分析

比较完整 Loss和神经网络训练

1.loss等于87.33不变

2.loss保持0.69左右

参考资料

loss一直不下降的原因有很多,可以从头到尾滤一遍:

loss一开始就不下降


现在都有ap来衡量网络收敛程度,实践发现,loss降低,但是ap不一定增长。

一,train loss与test loss结果分析

train loss 不断下降,test loss不断下降,说明网络仍在学习;

train loss 不断下降,test loss趋于不变,说明网络过拟合;

train loss 趋于不变,test loss不断下降,说明数据集100%有问题;

train loss 趋于不变&#x

### 模型训练 Loss 曲线分析与处理方法 #### 绘制 Loss 曲线 为了可视化模型的训练过程,绘制 loss 曲线是一项基本操作。这可以通过记录每次 epoch 的损失值并绘制成图来实现。 ```python import matplotlib.pyplot as plt def plot_loss_curve(train_losses, val_losses): epochs = range(1, len(train_losses) + 1) plt.plot(epochs, train_losses, 'b', label='Training Loss') plt.plot(epochs, val_losses, 'r', label='Validation Loss') plt.title('Training and Validation Loss') plt.xlabel('Epochs') plt.ylabel('Loss') plt.legend() plt.show() ``` 此代码片段展示了如何利用 `matplotlib` 库创建一个简单的折线图表以对比训练集和验证集上的损失变化趋势[^1]。 #### 分析 Loss 曲线 对于 CNN 训练而言,观察训练曲线有助于评估模型的表现以及识别可能存在的问题。具体来说: - **完全重合**:表明训练和验证损失几乎一致地下降至稳定状态,意味着模型很好地捕捉到了数据特征而至于过度拟合特定样本。 - **验证损失高于训练损失**:暗示着可能存在过拟合的情况,即模型过于专注于记忆训练集中的一些细节而非泛化能力;此时应考虑增加正则化项、减少网络层数或采用更多样化的输入数据等方式缓解该状况[^3]。 - **训练损失高于验证损失**:这种情况较为少见但也可能发生,特别是当测试/验证集合本身存在异常时。更常见的是它指示了一个欠拟合的状态——模型未能充分学习到足够的模式去解释整个分布,则需尝试增大模型容量或是优化现有架构设计[^4]。 值得注意的是,仅依赖于 loss 曲线并能给出绝对准确的问题定位,还需要结合其他辅助手段如精度指标或其他领域专业知识来进行全面考量。
评论 46
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法网奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值