环境准备:pychar,win10
下载三个包:
import keras
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
直接开始:
提示错误:
ModuleNotFoundError: No module named 'keras.backend.tensorflow_backend'; 'keras.backend' is not a package
找到tensorflow对应的ceras的版本;
参考地址:tensorflow-keras
keras中调用tensorflow-gpu
import keras.backend.tensorflow_backend as KTF
import os
#进行配置,每个GPU使用90%上限现存
os.environ["CUDA_VISIBLE_DEVICES"]="0" # 使用编号为0,1号的GPU
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.9 # 每个GPU上限控制在90%以内
session = tf.Session(config=config)
# 设置session
KTF.set_session(session)
import keras
import numpy as np
import matplotlib.pyplot as plt
# #调用GPU
# """GPU设置为按需增长"""
# import os
# import tensorflow as tf
# import keras.backend.tensorflow_backend as KTF
# # 指定第一块GPU可用
# os.environ["CUDA_VISIBLE_DEVICES"] = "0"
# config = tf.ConfigProto()
# config.gpu_options.allow_growth=True #不全部占满显存, 按需分配
# # config.gpu_options.per_process_gpu_memory_fraction = 0.3
# sess = tf.Session(config=config)
# KTF.set_session(sess)
#
# #调用GPU代码部分结束
#按顺序构成的模型,最简单的,一层层的.
from keras.models import Sequential
# 全连接层
from keras.layers import Dense
#使用 numpys随机生成点
#再随机生成一些噪音.
x_data=np.random.rand(100)
noise=np.random.normal(0,0.01,x_data.shape)
y_data=x_data*0.1+0.2+noise #一条线
#显示随机点
plt.scatter(x_data,y_data)
plt.show()
#构建一个顺序模型
model=Sequential()
#在模型中添加一个全连接层
model.add(Dense(units=1,input_dim=1))#输出是一维的,输入也是一维的
#因为会输入一个x的值,输出一个y的值.
#sgd 随机梯度下降法
#mse 均方误差
model.compile(optimizer='sgd',loss='mse')
#训练模型
for step in range(5001):
#每次都训练一个批次
cost=model.train_on_batch(x_data,y_data)#每次放入一个批次进行训练
#每500个cost打印一次cost值.
if step%500==0:
print("cost 的值 ",cost)
#打印权值和偏置值
# #只有一层,所以是0
# 因为输入是1,输出是1,所以也只有一个权值.
W,b=model.layers[0].get_weights()
print("W****",W,"b*****",b)
# 把x_data 放进网络中,预测 y_pred
y_pred=model.predict(x_data)
#打印出来,显示随机点
#上边已经打印了,这里就不写了
#显示预测结果
plt.scatter(x_data,y_data) #scatter是绘制散点图.
#预测值为红色,宽度为3
plt.plot(x_data,y_pred,"r-",lw=3)
plt.show()