(LeetCode) 191. Number of 1 Bits

本文介绍了一种高效算法来计算一个无符号整数的二进制表示中1的个数,即汉明重量。通过使用位操作技巧,如x-1&x去除最低位的1,直至x变为0,从而实现快速计数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

191. Number of 1 Bits

Write a function that takes an unsigned integer and returns the number of ’1’ bits it has (also known as the Hamming weight).
For example, the 32-bit integer ’11’ has binary representation 00000000000000000000000000001011, so the function should return 3.

191. 二进制中1的个数

返回一个无符号数的二进制中1的个数。
比如:32位的正数11的二进制为00000000000000000000000000001011, 所以应该返回3.

思路

x-1 & x这样的操作能够去掉最低位的1。连续做这样的操作,直到x为0,即可统计出1的个数。

代码

class Solution {
public:
    int hammingWeight(uint32_t n) {
        int count = 0;
        while(n){
            n &= n-1;
            count ++;
        }
        return count;
    }
};
### LeetCode Problems Involving Counting the Number of 1s in Binary Representation #### Problem Description from LeetCode 191. Number of 1 Bits A task involves writing a function that receives an unsigned integer and returns the quantity of '1' bits within its binary form. The focus lies on identifying and tallying these specific bit values present in any given input number[^1]. ```python class Solution: def hammingWeight(self, n: int) -> int: count = 0 while n: count += n & 1 n >>= 1 return count ``` This Python code snippet demonstrates how to implement the solution using bitwise operations. #### Problem Description from LeetCode 338. Counting Bits Another related challenge requires generating an output list where each element represents the amount of set bits ('1') found in the binary notation for integers ranging from `0` up to a specified value `n`. This problem emphasizes creating an efficient algorithm capable of handling ranges efficiently[^4]. ```python def countBits(num): result = [0] * (num + 1) for i in range(1, num + 1): result[i] = result[i >> 1] + (i & 1) return result ``` Here, dynamic programming principles are applied alongside bitwise shifts (`>>`) and AND (`&`) operators to optimize performance during computation. #### Explanation Using Brian Kernighan Algorithm For optimizing further especially with large inputs, applying algorithms like **Brian Kernighan** offers significant advantages due to reduced iterations needed per operation compared against straightforward methods iterating through all possible positions or dividing repeatedly until reaching zero. The core idea behind this method relies upon subtracting powers-of-two corresponding only to those places holding actual ‘ones’ thereby skipping over zeroes entirely thus reducing unnecessary checks: ```python def hammingWeight(n): count = 0 while n != 0: n &= (n - 1) count += 1 return count ``` --related questions-- 1. How does the Hamming weight calculation differ between signed versus unsigned integers? 2. Can you explain why shifting right works effectively when determining counts of one-bits? 3. What optimizations exist beyond basic iteration techniques for calculating bit counts? 4. Is there any difference in implementation logic required across various programming languages supporting similar syntaxes? 5. Why might someone choose the Brian Kernighan approach over other strategies?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值