4-1 计算机视觉-卷积神经网络

本文探讨了CNN中图像尺寸变化对参数数量的影响,指出尺寸变化不影响参数量,因参数共享减少了模型复杂性。此外,解释了卷积层的感受野概念及其计算方式,并详细阐述了卷积层的参数量和计算量的计算方法。最后,讨论了池化层在特征提取和模型简化中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 当图像尺寸变为 2 倍,CNN 的参数数量变为几倍?为什么?
2. CNN共享参数有什么优点?
3. 卷积层的感受野指的是什么,如何计算?
4. 卷积层的参数量和计算量该如何计算,请举例说明
5. pooling层的作用是什么?


1. 当图像尺寸变为 2 倍,CNN 的参数数量变为几倍?为什么?

CNN的参数量不变,局部感知参数定义个图像输入无关


2. CNN共享参数有什么优点?

相比于全连接网络,减少参数量,平移不变性


3. 卷积层的感受野指的是什么,如何计算?

特征图上的点所影响原图像的像素区域,通过卷积核size、pad、stride等数值换算。

假设原始输入图像为L_{w}*L_{h},网络第i层e方向的感受野大小为R_{e}^{i},其中e\epsilon{w,h}分别代表横向(宽)和纵向(高)两个方向的感受范围

1、如果第i层为卷积层(CNN)或池化层(pooling)那么:

R_{e}^{i} = min(R_{e}^{i-1} +(k_{e}^{i-1} -1) \prod_{j=0}^{j-1}S_{e}^{j},L_{e} )

其中k_{e}^{i}为第i层卷积核/池化核的尺寸,s_{e}^{i}是第j层的滑动步长。

2、激活层和批归一化层不改变感受野

3、全连接层感受野就是整个图像


4. 卷积层的参数量和计算量该如何计算,请举例说明

参数量:每个卷积核的参数量kw*kh + 1,+1为偏置参数可以为0、特征通道数c,这里输入通道数为ci,输出通道数为co,参数量为ci*co*kw*kh

计算量:参数量*在feature map上的滑动次数,ci*co*kw*kh*Nw*Nh,横向滑动Nw次纵向滑动Nh次


5. pooling层的作用是什么?

从特征图中,采样特征,如maxpooling、average pooling等方式。不增加计算量的基础上,增加了感受野,关注特征图中更需要关注的特征。

在一些图像分类、检测、分割任务中在最后的feature map和全连接之间加上,AdaptiveAveragePool、AdaptiveMaxPool,为了适应输入变化后,同一feature map尺寸对接固定的全连接层

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值