1. 当图像尺寸变为 2 倍,CNN 的参数数量变为几倍?为什么?
2. CNN共享参数有什么优点?
3. 卷积层的感受野指的是什么,如何计算?
4. 卷积层的参数量和计算量该如何计算,请举例说明
5. pooling层的作用是什么?
1. 当图像尺寸变为 2 倍,CNN 的参数数量变为几倍?为什么?
CNN的参数量不变,局部感知参数定义个图像输入无关
2. CNN共享参数有什么优点?
相比于全连接网络,减少参数量,平移不变性
3. 卷积层的感受野指的是什么,如何计算?
特征图上的点所影响原图像的像素区域,通过卷积核size、pad、stride等数值换算。
假设原始输入图像为,网络第i层e方向的感受野大小为
,其中e
{w,h}分别代表横向(宽)和纵向(高)两个方向的感受范围
1、如果第i层为卷积层(CNN)或池化层(pooling)那么:
其中为第i层卷积核/池化核的尺寸,
是第j层的滑动步长。
2、激活层和批归一化层不改变感受野
3、全连接层感受野就是整个图像
4. 卷积层的参数量和计算量该如何计算,请举例说明
参数量:每个卷积核的参数量kw*kh + 1,+1为偏置参数可以为0、特征通道数c,这里输入通道数为ci,输出通道数为co,参数量为ci*co*kw*kh
计算量:参数量*在feature map上的滑动次数,ci*co*kw*kh*Nw*Nh,横向滑动Nw次纵向滑动Nh次
5. pooling层的作用是什么?
从特征图中,采样特征,如maxpooling、average pooling等方式。不增加计算量的基础上,增加了感受野,关注特征图中更需要关注的特征。
在一些图像分类、检测、分割任务中在最后的feature map和全连接之间加上,AdaptiveAveragePool、AdaptiveMaxPool,为了适应输入变化后,同一feature map尺寸对接固定的全连接层