【deeplearning基础知识】Momentum优化是如何计算的

本文探讨了mini-batch SGD训练算法存在的问题,包括在最优点附近震荡和收敛速度问题。介绍了Momentum方法如何有效解决这些问题,通过引入动量概念改进参数更新过程,实现更稳定和快速的收敛。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

mini-batch SGD训练算法的问题:1)虽然能够带来很好的训练速度,但是在到达最优点的时候并不能够总是真正到达最优点,而是在最优点附近徘徊容易产生一些震荡

2)采用小的学习率的时候,会导致网络在训练的时候收敛太慢;当我们采用大的学习率的时候,会导致在训练过程中优化的幅度跳过函数的范围,也就是可能跳过最优点。

Momentum方法:能够很好的解决SGD中上面的两个问题。

SGD更新参数的方式:参数等于上次的值,减去学习率*梯度。

Momentum更新参数的方式:

第一步:先计算动量的速度,Vdw等于上一次的值和梯度dW共同计算得到,其中取值一般为0.9。

第二步: 更新参数W,这里的才为学习率。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值