【caffe】caffe框架中的train_val.prototxt文件和deploy.prototxt文件区别和转换

                       train_val.prototxt文件和deploy.prototxt文件区别和转换

1.train_val.prototxt文件和deploy.prototxt文件介绍。

train_val.prototxt:训练与测试使用的网络结构文件

deploy.prototxt:模型构造文件。用于实际场景使用时的网络结构文件。

这两个文件是caffe的网络结构文件。train_val.prototx是训练时候的网络结构,deploy.prototxt用于发布(即测试时候的网络结构)。

2.二者的主要不同之处

(1)两个文件开头的输入数据不一样。

train_val.prototxt 中的开头:定义的是训练和测试数据的来源。

name: "MOBILENET_V2"
layer {
  name: "Data1"
  type: "Data"
  top: "Data1"
  top: "Data2"
  include {
    phase: TRAIN
  }
  transform_param {
    mean_value: 96.6855
    mean_value: 97.078
    mean_value: 102.185
    crop_size: 224
    mirror:false
  }
  data_param {
    source: "/home/caffe-ssd/data/resnet_shuzi/lmdb224X224/train_lmdb"
    batch_size: 16
    backend: LMDB
  }
}
layer {
  name: "Data1"
  type: "Data"
  top: "Data1"
  top: "Data2"
  include {
    phase: TEST
  }
  transform_param {
    mean_value: 96.4856
    mean_value: 96.9166
    mean_value: 101.907
    crop_size: 224
    mirror:false
  }
  data_param {
    source: "/home/caffe-ssd/data/resnet_shuzi/lmdb224X224/test_lmdb"
    batch_size: 8
    backend: LMDB
  }
}

deploy.prototxt的开头:不需要定义训练和测试数据集的下相关信息,它只需要定义输入数据的大小格式

name: "MOBILENET_V2"
layer {
  name: "data"
  type: "Input"
  top: "data"
  # 输入数据的batch size, channel, width, height
  input_param { shape: { dim: 1 dim: 3 dim: 224 dim: 224 } }
}

(2)参数初始化

train_val.prototxt中会在对卷积层、全连层中的weight,bias等参数进行初始化。

deploy.prototxt中加载训练caffemodel中训练好的参数进行预测,因此不需要进行初始化

如果要将train_val.prototxt转换成deploy.prototxt,需要将卷积层和全连层中的weight,bias参数初始化删掉。

(3)accuracy层不同。

train_val.prototx中需要测试准确率,而deploy则不需要。在将train_val.prototxt转换成deploy.prototxt时,如果train_val.prototxt中含有accuracy层,则将其删掉。

layer {
  name: "Accuracy1"
  type: "Accuracy"
  bottom: "fc70"
  bottom: "Data2"
  top: "Accuracy1"
  include {
    phase: TEST
  }
}

(4)将train_val.prototxt中损失层的“name”改为 prob ,“type”改为 softmax,并删除输入的标签。

train_val.prototxt中的损失层:type为SoftmaxWithLoss。(因为训练的时候必须有loss作为反馈)

#train_val.prototx中的损失层:

layer {
  name: "loss"
  type: "SoftmaxWithLoss"
  bottom: "fc7"
  bottom: "label"
  top: "loss"
}

deploy.prototxt的prob层:而deploy.prototxt的type为Softmax

#deploy.prototxt中的prob层

layer {
  name: "prob"
  type: "Softmax"
  bottom: "fc7"
  top: "prob"
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值