一、描述
斐波那契数列,现在要求输入一个正整数 n ,请你输出斐波那契数列的第 n 项,初始状态f(1) = 1, f(2) = 1, 函数的状态转移问题:f(n) = f(n-1) + f(n-2)。
二、暴力递归
int Fibonacci(int n) {
if (1 == n || 2 == n) {
return 1;
}
return Fibonacci(n-1) + Fibonacci(n-2);
}
时间复杂度:O(2^n)
三、动态规划
int Fibonacci(int n) {
if (1 == n || 2 == n) {
return 1;
}
int a = 1;
int b = 1;
for (int i = 3; i <= n; ++i) {
int c = a + b;
a = b;
b = c;
}
return b;
}
时间复杂度:O(n)
四、logn解法
上图对a、b、c、d的解法,还有下面一种方法
通过线性关系的出:f(3) = af(2) + bf(1), 又由于f(3) = f(2) + f(1), 所以a=1, b=1, 同理解c、d
int Fibonacci(int n) {
if (n < 1) {
return 0;
}
if (n < 3) {
return 1;
}
vector<vector<int>> base = {{1, 1}, {1, 0}};
auto res = MatrixPower(base, n - 2);
return res[0][0] + res[1][0];
}
vector<vector<int>> MatrixPower(const vector<vector<int>>& base, int n) {
vector<vector<int>> res(base.size(), vector<int>(base[0].size()));
for (int i = 0; i < base.size(); ++i) {
res[i][i] = 1;
}
vector<vector<int>> tmp = base;
while (n != 0) {
if ((n & 1) != 0) {
res = MultiMatrix(res, tmp);
}
tmp = MultiMatrix(tmp, tmp);
n >>= 1;
}
return res;
}
vector<vector<int>> MultiMatrix(const vector<vector<int>>& m1, const vector<vector<int>>& m2) {
vector<vector<int>> res(m1.size(), vector<int>(m2[0].size()));
for (int i = 0; i < m1.size(); ++i) {
for (int j = 0; j < m2[0].size(); ++j) {
for (int k = 0; k < m2.size(); ++k) {
res[i][j] += m1[i][k] * m2[k][j];
}
}
}
return res;
}
参考:https://juejin.cn/post/7087118133890121736