斐波那契数列

一、描述

斐波那契数列,现在要求输入一个正整数 n ,请你输出斐波那契数列的第 n 项,初始状态f(1) = 1, f(2) = 1, 函数的状态转移问题:f(n) = f(n-1) + f(n-2)。

二、暴力递归

int Fibonacci(int n) {
    if (1 == n || 2 == n) {
        return 1;
    }
    return Fibonacci(n-1) + Fibonacci(n-2);
}

时间复杂度:O(2^n)

三、动态规划

int Fibonacci(int n) {
		if (1 == n || 2 == n) {
        return 1;
    }
    int a = 1;
    int b = 1;
    for (int i = 3; i <= n; ++i) {
        int c = a + b;
        a = b;
        b = c;
    }
    return b;
}

时间复杂度:O(n)

四、logn解法

在这里插入图片描述

上图对a、b、c、d的解法,还有下面一种方法

通过线性关系的出:f(3) = af(2) + bf(1), 又由于f(3) = f(2) + f(1), 所以a=1, b=1, 同理解c、d

int Fibonacci(int n) {
    if (n < 1) {
        return 0;
    }
    if (n < 3) {
        return 1;
    }
    vector<vector<int>> base = {{1, 1}, {1, 0}};
    auto res = MatrixPower(base, n - 2);
    return res[0][0] + res[1][0];
}
vector<vector<int>> MatrixPower(const vector<vector<int>>& base, int n) {
    vector<vector<int>> res(base.size(), vector<int>(base[0].size()));
    for (int i = 0; i < base.size(); ++i) {
        res[i][i] = 1;
    }
    vector<vector<int>> tmp = base;
    while (n != 0) {
        if ((n & 1) != 0) {
            res = MultiMatrix(res, tmp);
        }
        tmp = MultiMatrix(tmp, tmp);
        n >>= 1;
    }
    return res;
}
vector<vector<int>> MultiMatrix(const vector<vector<int>>& m1, const vector<vector<int>>& m2) {
    vector<vector<int>> res(m1.size(), vector<int>(m2[0].size()));
    for (int i = 0; i < m1.size(); ++i) {
        for (int j = 0; j < m2[0].size(); ++j) {
            for (int k = 0; k < m2.size(); ++k) {
                res[i][j] += m1[i][k] * m2[k][j];
            }
        }
    }
    return res;
}

参考:https://juejin.cn/post/7087118133890121736

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值