【NOIP2016提高A组集训第4场11.1】平衡的子集

该博客讨论了NOIP2016提高组竞赛中的一个问题,涉及如何从一组人中选择若干人,使得他们可以被分成两组且力气总和相等。博主分析了暴力枚举会超时的问题,并提出了优化策略,即只枚举一半人数,分别考虑前后半部分的组合和是否被选中,通过这种方式减少计算复杂度,寻找合法选法的总数。
摘要由CSDN通过智能技术生成

题目

夏令营有N个人,每个人的力气为M(i)。请大家从这N个人中选出若干人,如果这些人可以分成两组且两组力气之和完全相等,则称为一个合法的选法,问有多少种合法的选法?

分析

如果暴力枚举每个人被分到哪个组或不分,O(2^20)显然会超时。
我们换一种思路,
每次只枚举一半,
将前后半部分分开枚举后半部分,枚举出每种的和以及有没有被选的状态。
枚举和相同的前后部分,如果这种状态没有被选过,就ans+1,然后将这种状态打个标记,这种状态就不再产生贡献。

#include <cmath>
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <queue>
const int maxlongint=2147483647;
const int mo=1000000007;
const long long N=100000;
using namespace std;
struct ddx
{
    long long sum;
    int sta;
}a[N*6],b[N*6];
int re[N],n,ans,tot,tot1,bz[N*20],mi[N];
bool cmp(ddx x,ddx y)
{
    return x.sum<y.sum;
}
void dg(int x,long long y,int z)
{
    if(x>n/2)
    {
        a[++tot].sum=y;
        a[tot].sta=z;
        return;
    }
    dg(x+1,y,z);
    dg(x+1,y+re[x],z+mi[x-1]);
    dg(x+1,y-re[x],z+mi[x-1]);
}
void dg1(int x,long long y,int z)
{
    if(x>n)
    {
        b[++tot1].sum=y;
        b[tot1].sta=z;
        return;
    }
    dg1(x+1,y,z);
    dg1(x+1,y+re[x],z+mi[x-1]);
    dg1(x+1,y-re[x],z+mi[x-1]);
}
int main()
{
    scanf("%d",&n);
    mi[0]=1;
    for(int i=1;i<=n+1;i++) mi[i]=mi[i-1]*2;
    for(int i=1;i<=n;i++) scanf("%d",&re[i]);
    dg(1,0,0);
    dg1(n/2+1,0,0);
    sort(a+1,a+1+tot,cmp);
    sort(b+1,b+1+tot1,cmp);
    int i=1,j=1;
    for(;i<=tot && j<=tot1;)
    {
        if(a[i].sum<b[j].sum) i++;
        else
        if(a[i].sum>b[j].sum) j++;
        else
        {
        int k=i,l=j;
        for(;a[i].sum==a[k].sum;) k++;
        for(;b[j].sum==b[l].sum;) l++;
        for(int p=i;p<=k-1;p++)
            for(int q=j;q<=l-1;q++)
            {
                if(!bz[a[p].sta+b[q].sta])
                {
                    ans++;
                    bz[a[p].sta+b[q].sta]=true;
                }
            }
        i=k;
        j=l;
        }
    }
    cout<<ans-1;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值