- 博客(14)
- 收藏
- 关注
原创 TensorFlow MNIST数据下载错误[SSL: CERTIFICATE_VERIFY_FAILED]的解决方案
tensorflow导入MINNIST数据时发生问题:None – [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed经查询是自签名的证书造成的问题。简单的解决办法,取消证书验证即可,即在代码中加入:sudo /Applications/Python\ 3.7/Install\ Certificates.command问题解决...
2022-03-02 15:50:31
536
原创 问题解决 module ‘google.protobuf.internal.containers‘ has no attribute ‘MutableMapping‘
在运行别人代码导入tensorflow包时,出现该问题。AttributeError: module ‘google.protobuf.internal.containers’ has no attribute ‘MutableMapping’解决方法:(1)检查protoc和protobuf的版本是否一致(avod) [root@localhost avod]# protoc --versionlibprotoc 3.19.4(avod) [root@localhost avod]# pi
2022-02-21 10:50:18
3648
原创 pytorch图像分类
这里写一个用pytorch图像分类实例,包含早停写法。其中的pytorchtools调用仓库import torchimport torch.nn as nnimport torch.nn.functional as Fimport torchvisionimport torchvision.transforms as transformsimport torch.optim as optimfrom pytorchtools import EarlyStopping# cifar-10官方
2021-09-28 11:40:51
402
原创 gitee避免每次提交都需要输入用户名和密码的小技巧
1、git重设用户名和邮箱;密钥添加到gitee SSH公钥中2、git remote -v 查看分支对应3、git remote rm origin 删除远程分支对应4、git branch --set-upstream-to=origin/远程分支 本地分支 建立分支对应关系5、git remote -v 查看对应是否正确...
2021-09-09 19:46:31
1608
原创 解决git冲突的一种方式
仅供参考,修改文件较少时可以通过回退到历史commit,备份修改文件进行恢复1、本地备份文件2、git log 查看提交记录的commit ID3、git reset --hard commit_ID 回退重新修改。
2021-09-09 17:26:56
121
原创 单机版Fate安装教程(含虚拟机搭建)
单机版Fate安装教程(含虚拟机搭建)1.虚拟机安装1)下载VMwarehttps://www.vmware.com/products/workstation-player/workstation-player-evaluation.html2)双击下载的文件3)安装Microsoft VC Redistributable4)再双击下载好的文件,下一步5)选择安装位置,这里有增强型键盘驱动程序,可选可不选。6)安装7)Ubuntu镜像文件下载(注意系统内存和存储空间)https
2021-08-24 15:38:21
3104
1
转载 Model-Agnostic Meta-Learning (MAML)模型介绍及算法详解
在学习联邦学习过程中,有涉及到MAML的内容,这里将学习资料做转载原文地址添加链接描述MAML在学术界已经是非常重要的模型了,论文Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks自2017年发表至今已经收获了400+的引用。由于当前网上关于MAML的中文介绍少之又少,可能很多小伙伴对其还不是特别理解。所以今天我整理了这段时间来的学习心得,与大家分享自己对MAML的认识与理解。MAML可以用于Supervised Regre
2021-07-23 10:55:18
1807
原创 一种通用的异步纵向联邦学习架构(VAFL: a Method of Vertical Asynchronous Federated Learning)
VAFL: a Method of Vertical Asynchronous Federated Learning论文传送门:https://arxiv.org/pdf/2007.06081.pdf摘要:本文旨在以异步方式解决垂直 FL,并开发了一种简单的 FL 方法。新方法允许每个客户端运行随机梯度算法而无需与其他客户端协调,因此适用于客户端的间歇性连接。该方法进一步使用了一种新的扰动局部嵌入技术来保证数据隐私并提高通信效率。问题定义:假设有M个client,N的数据集大小,被不同端持有不同
2021-07-20 19:11:34
1221
原创 正类标签的联邦学习(Federated Learning with Only Positive Labels)
Federated Learning with Only Positive Labels论文传送:https://arxiv.org/pdf/2004.10342.pdf以下是个人理解,欢迎批评指正!论文概括:本文主要针对的是一种横向联邦non-iid场景下的极端问题(即每方仅持有一类标签)进行讨论。按照传统联邦学习架构,通过SGD迭代后将会导致变成一个单一分类器,特别是针对嵌入分类器,这将导致结果输出为单一的点。因此,本文提出FedAwS,一种仅使用正标签进行训练的通用框架。分类模型:将分类模
2021-07-20 15:39:54
1285
转载 联邦学习基础
摘要当今人工智能仍然面临两大挑战:在大多数工业中,数据以 “孤岛”形式存在加强数据隐私和安全问题针对上述挑战提出可能的解决方法: 安全联邦学习(secure federated learning)全面介绍了安全联邦学习的框架,包括1)横向联邦学习(horizontal federated learning),2)纵向联邦学习(vertical federated learning),3)联邦迁移学习(federated transfer learning)提供FL定义、架构、FL框架的
2021-07-09 18:55:11
1200
原创 Deep leakage from Gradients论文解析
Deep leakage from Gradients论文解析今天来给大家介绍下2019年NIPS上发表的一篇通过梯度进行原始数据恢复的论文。论文传送门**问题背景:**现在分布式机器学习和联邦学习中普遍接受的一个做法是将数据梯度进行共享,多方数据通过共享的梯度信息进行联合建模,即在原始数据不出库的前提下进行建模,那么这样引出作者的一个思考:这样的梯度信息是否是安全的呢?我们知道,梯度与标签和样本特征有关,那么意味着梯度其中包含着部分的标签信息和原始信息,所以作者做了这样一个工作,通过神经网络中的梯度
2021-07-09 17:52:36
3774
转载 联邦学习开源框架
来源:https://zhuanlan.zhihu.com/p/387101962FATE单位:微众银行github: https://github.com/FederatedAI/FATE star:3.2kdocs:https://github.com/FederatedAI/FATE/blob/master/doc/develop_guide_zh.rst概述:FATE (Federated AI Technology Enabler) 是微众银行AI部门发起的开源项目,为联邦学习生态系统提
2021-07-08 17:16:40
3379
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人