正类标签的联邦学习(Federated Learning with Only Positive Labels)

Federated Learning with Only Positive Labels

论文传送:https://arxiv.org/pdf/2004.10342.pdf

以下是个人理解,欢迎批评指正!

论文概括:

本文主要针对的是一种横向联邦non-iid场景下的极端问题(即每方仅持有一类标签)进行讨论。按照传统联邦学习架构,通过SGD迭代后将会导致变成一个单一分类器,特别是针对嵌入分类器,这将导致结果输出为单一的点。因此,本文提出FedAwS,一种仅使用正标签进行训练的通用框架。

分类模型:

将分类模型重定义为:[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-r0C8dAX1-1626766580694)(https://www.zhihu.com/equation?tex=f%28x%29+%3D+Wg_%7B%5Ctheta%7D%28x%29)]

其中 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ynpEtWcI-1626766580696)(https://www.zhihu.com/equation?tex=g_%5Ctheta%3A%5Cchi%5Cto%7B%5Cmathcal%7BR%7D%7D%5Ed%2CW%5Cin%7B%5Cmathcal%7BR%7D%7D%5E%7BC%5Ctimes+d%7D)] ,重定义后的分类模型将输入数据通过 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-J3WW2NTA-1626766580697)(https://www.zhihu.com/equation?tex=g_%5Ctheta%28x%29)] 将高维特征映射到d维,后通过embedding矩阵将低维特征计算其在C分类结果。由此该分类模型由参数 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-bTd5JRcC-1626766580697)(https://www.zhihu.com/equation?tex=%5C%7BW%2C%5Ctheta%5C%7D)] 定义。

本地模型更新方式(梯度下降):

img

全局模型参数更新方式(同横向联邦):

img

损失函数定义:包括正项和负项的区分

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-VYmKnUQk-1626766580699)(/Users/chenxiaolin/Library/Application Support/typora-user-images/image-20210720152040480.png)]

目标是为了:

1)使得嵌入向量和正类嵌入向量足够接近

2)使得嵌入向量和负类嵌入向量足够远离

为了保证类向量间不同嵌入向量的距离,我们引入几何正则项:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-cDzWavBn-1626766580700)(/Users/chenxiaolin/Library/Application Support/typora-user-images/image-20210720152904949.png)]

算法

设定有C个参与者参与,第i个参与者拥有第i类的数据集。便于理解直接就算法流程图讲解,见下图。

img

该算法中值得注意的点有两点:

每个Client仅负责embedding矩阵W中的某一个行向量 ,可以从第13行看出。
关于embedding矩阵 W的更新是在Server端进行梯度下降的更新。

实验结果:

## [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-hDk9Fzie-1626766580704)(/Users/chenxiaolin/Library/Application Support/typora-user-images/image-20210720153149758.png)]

个人理解:该论文针对极端条件下的嵌入多任务联邦学习分类做了一定改进,侧重理论分析部分,但是在实际应用中,几乎不存在这样的场景,实际意义不大,理论意义更多一些。

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: "Federated learning with non-iid data" 的含义是:在非独立同分布数据(non-iid data)的情况下进行联邦学习联邦学习是一种分布式学习的方法,其特点是模型的训练和更新是在本地设备上进行,而不是在中心服务器上进行。而非独立同分布数据则意味着不同设备之间的数据具有不同的分布和特征,这会对联邦学习的效果造成挑战。因此,在进行联邦学习时,需要考虑如何处理这种情况,以提高模型的准确性和鲁棒性。 ### 回答2: 联邦学习是近年来备受关注的一种机器学习方法,其核心精神是通过多个客户端设备在本地进行数据处理和训练模型,不必将原始数据汇集到一起,避免了隐私泄露和数据传输带来的风险。但实际上,大多数现实场景中的数据并不是独立同分布的(non-iid),多个客户端设备所在的数据分布也极有可能不同,如何在保持原有联邦学习思路的基础上应对非iid数据,也成为了当前研究的热门问题。 目前,学界和产业界对非iid联邦学习的解决方案尝试有很多,其中一些典型的方法包括: 一、联邦聚(Federated Clustering)。该方法利用监督和非监督的数据聚模型,对处理不同数据分布的客户端设备进行分,形成若干个数据分布相似的组,然后在每个组中进行联合学习,对每个组得到的模型结果进行合并。 二、联邦迁移学习(Federated Transfer Learning)。该方法通过在源域数据上进行模型训练和参数更新,再通过一定的方法将已训练的模型迁移到目标域中进行更新和优化,从而使得目标域数据更好地适应模型。 三、混合学习(Federated Hybrid Learning)。该方法结合了联邦学习和分层模型的想法,将多个客户端设备的数据层级化,在相同维度的数据上进行联邦学习,但不同层级内的数据各自训练特定的模型。 以上这些方法都对非iid联邦学习的问题提供了一定的思路和解决方案,在应用场景中也得到了初步的应用。但是,不同于iid数据的不同分布、语义、别之间的差异使得非iid联邦学习更具挑战性,其数据分布、协作策略、学习算法等方面的问题都需要进一步研究和提高。未来,我们需要不断探索更好、更高效、更准确的非iid联邦学习的方法和方案,应用到各个行业领域提高数据的利用效率和隐私保护水平。 ### 回答3: 联邦学习是一种先进的机器学习技术,它允许多个参与方共同训练一个模型,而不需要将原始数据集集中在单个位置。这种分布式学习的方式可以最大程度地保护用户的数据隐私和安全。 然而,在实际应用中,有时候我们会遇到一些具有不同的分布性质的非IID数据集。因为数据的不均匀和异构性质,使得对于分布在不同的机器上的数据进行联合训练变得更加困难。这种情况也称为不相同的数据偏移或数据漂移。不同分布性质的数据会导致训练模型的性能下降,因为模型无法对不同的数据进行适应。这也使得联合学习更具挑战性。 为了解决这个问题,可以对数据进行采样和重新加权,以便在融合时使每个本地模型对于不同的数据立场相对均衡。一种基于采样的方案是Federated Averaging with Local Adapation(FALA),它是一种高效的算法,它通过对于权值进行本地的调整,减少了由于数据偏移带来的下降的性能。此外,别抽样和异质性采样也可以用来处理iid 的数据集之间的不相同。在数据偏移情况下,这需要更多的小样本和多轮次迭代。 另一种方法是加入对模型的个性化贡献,即在联合优化时分配不同的权重给本地模型或者对于不同的参与方使用不同的模型。例如,对于基于 神经网络的模型,可以采用逻辑斯蒂回归模型或者线性模型,以提高对于多样性的应对能力。 总而言之,对于不同的非IID数据,需要在联合训练时采用合适的方案,以克服分布不均带来的挑战并获得更好的结果。需要根据不同的实际情况选择最佳的方法,以满足不同的需求。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值