联邦学习安全么?(数据攻击)

联邦学习的数据攻击

数据攻击类型

常见横向联邦学习攻击方式包含三类:

成员推理[1]:攻击方对于给定样本,判断是否在模型训练集。

属性推断[2]:攻击方对于给定样本属性,判断是否出现在t轮训练。

特征推理:通过观测部分持有方数据信息还原目标样本原始数据。

特征推理

梯度恢复

1)DLG攻击[3]

任务:通过神经网络中的梯度信息去反推原始数据和标签。

方法:随机生成一份和真数据同样大小的假输入样本和假的标签,然后把这些假样本和假标签输入到现有的模型当中,然后得到假的模型梯度。方法的目标是生成与原模型相同梯度的假梯度,这样在假样本和假标签就和真实的样本标签一致

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-g2V8G1qx-1625824202252)(/Users/chenxiaolin/Library/Application Support/typora-user-images/image-20210709172942169.png)]

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-clOKzo2B-1625824202253)(/Users/chenxiaolin/Library/Application Support/typora-user-images/image-20210709173037879.png)]

算法:[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-zlQ9XPxI-1625824202254)(/Users/chenxiaolin/Library/Application Support/typora-user-images/image-20210709173327815.png)]

实验结果:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-kcUDHiCt-1625824202255)(/Users/chenxiaolin/Library/Application Support/typora-user-images/image-20210709173448285.png)]

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-blXvNxWl-1625824202256)(/Users/chenxiaolin/Library/Application Support/typora-user-images/image-20210709173736715.png)]

缺陷:

(1)实验数据恢复条件苛刻,size=32*32,batch=1

(2)要求拿到模型结果,实际场景中是难以满足这样要求的

2)iDLG[4]

改进:当使用非负的激活函数时,例如ReLU和Sigmoid,他们激活函数输出的符号是相同的。因此,我们可以简单地识别出其对应的梯度为负值的ground truth标签。

在这里插入图片描述

算法:在这里插入图片描述

实验结果对比:

由于引入标签反向传播规律,因此标签恢复率达到100%。(传输数据的信息泄漏)

1629861288760

1629861311566

3)GradInversion[5]

任务:批量梯度恢复

目标形式:

1629876018559

其中 L g r a d L_{grad} Lgrad的目的是使得对可能的输入产生的梯度值与原模型的梯度值一致

1629876120155

正则项包括真实性正则项与组一致性正则项

1629876279089

真实性正则项

图像的先验性约束,借鉴Deepinversion对图像的自然优化

1629877034156

前两项为图像方差与L2范数,第三项是BN先验。

组一致性正则项

不同的随机种子进行图像的还原,会产生不同程度上的偏移

image-20210512153904252

采用不同的随机种子生成,然后对这些结果进行融合

1629878617745

实验结果:

误差项的消融实验

1629878637030

添加真实性以及组一致性,的确会使得图片质量上升,对齐的增益也是存在的。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-FtNJYlDH-1630293395149)(https://gitee.com/xiaobai201812/csdn_image/raw/master/imh/1629878685000.png)]

梯度反聚合[6]

横向场景中,多设备间进行梯度聚合

1629894750255

1629898391612

任务:通过聚合的梯度进行反向求解原始梯度,即

1629895451148

该问题等价于进行矩阵分解,其中p是01矩阵;可以通过求解下列问题进行:

1629895577309

特别地,在联邦场景中,聚合方在多轮通信中可以观察到每个物理机进行聚合的总数,得到下列问题:

1629895643513

考虑更新过程中的迭代误差,优化目标为:

1629895664624

算法如下:

1629895716060

纵向场景下的特征推理攻击方式[7]

任务:对预测模型通过特征攻击的方式还原对方样本。

1629882045959

其中target是特征攻击的目标放;adv作为攻击一方,由标签持有方和其他的数据特征持有方组成, θ \theta θ是模型参数,而 v v v是模型预测输出值。

二分类逻辑回归

1629887680555

如果 d t a r g e t = 1 d_{target}=1 dtarget=1,显然方程有精确解。

多分类逻辑回归

1629887868697

如果 d t a r g e t < = c − 1 d_{target}<=c-1 dtarget<=c1,可以通过逆运算形式进行求解。

如果 d t a r g e t > = c d_{target}>=c dtarget>=c,那么有无穷解,取pseudo逆,得到范数最小解。

实验结果:

1629888924743

决策树模型

算法如下:

通过攻击方的分裂信息以及标签信息,限制分裂方向,确定推理样本的分裂路径。

1629888331455

示例:

1629888322960

实验结果:

1629890090879

神经网或逻辑回归模型(GRN Attack)

如果是一个线性模型,横纵坐标分别表示已知的攻击方特征与目标特征, f f f表示分类器平面,那么根据 f f f与输出值v可以确定点在绿色直线上,再根据攻击方特征,可以较好准确率地推出目标特征地预测值。

1629892105433

输入攻击方特征 x a d v t x_{adv}^t xadvt和随机向量 r t r^t rt,通过全连接层生成模型,产生目标特征的预测值,并在与攻击方特征拼接后,输入到训练好的垂直联邦学习模型中,计算与ground truth预测值的差值,反向传播到输入层与生成模型中,进行参数更新。

对于像随机森林,可以通过近似神经网替代图中VFL的方式进行,从而实现梯度的反向传播。

1629891523844

实验结果:

随目标特征数的增加,变化如下:

1629892610559

对应不同的GRN输入下,与原始数据恢复的误差如下:

1629892995140

对于随机森林,正确分支的比例CBR(correct branching rate):

1629893716649

参考文献

[1]Nasr, Milad, Reza Shokri, and Amir Houmansadr. “Comprehensive privacy analysis of deep learning: Stand-alone and federated learning under passive and active white-box inference attacks.” (2018).

[2]Melis, Luca, et al. “Exploiting unintended feature leakage in collaborative learning.” 2019 IEEE Symposium on Security and Privacy (SP). IEEE, 2019.

[3]Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. In Advances in Neural Information Processing Systems, 2019.

[4]B. Zhao, K. R. Mopuri, and H. Bilen. iDLG: Improved deep leakage from gradients. arXiv preprint arXiv:2001.02610, 2020.

[5]Yin, H., Mallya, A., Vahdat, A., Alvarez, J. M., Kautz, J., & Molchanov, P. (2021). See through Gradients: Image Batch Recovery via GradInversion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 16337-16346).

[6]Lam, Maximilian, et al. “Gradient Disaggregation: Breaking Privacy in Federated Learning by Reconstructing the User Participant Matrix.” ICML 2021 (2021).

[7]Luo, Xinjian, et al. “Feature inference attack on model predictions in vertical federated learning.” 2021 IEEE 37th International Conference on Data Engineering (ICDE). IEEE, 2021.

  • 2
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值