【深度学习】: 脑部MRI图像分割

本文介绍了使用深度学习技术完成脑部MRI图像分割任务的过程,探讨了U-Net网络结构、DiceLoss和FocalTverskyLoss等改进策略,以及优化器如Adam和AMSGrad的应用,以提升模型在脑部图像分割的精度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 清华大学驭风计划课程链接 

学堂在线 - 精品在线课程学习平台 (xuetangx.com)

代码和报告均为本人自己实现(实验满分),只展示主要任务实验结果,如果需要详细的实验报告或者代码可以私聊博主,接实验技术指导1对1

有任何疑问或者问题,也欢迎私信博主,大家可以相互讨论交流哟~~

案例4:脑部MRI图像分割

相关知识点:语义分割、医学图像处理(skimage, medpy)、可视化(matplotlib)

1 任务简介

      本次案例将使用深度学习技术来完成脑部MRI(磁共振)图像分割任务,即对于处理好的一张MRI图像,通过神经网络分割出其中病变的区域。本次案例使用的数据集来自Kaggle[1],共包含110位病人的MRI数据,每位病人对应多张通道数为3的.tif格式图像,其对应的分割结果为单通道黑白图像(白色为病变区域),示例如下。

image.png

第一行: MRI图像;第二行: 对应的分割标签

      更详细的背景介绍请参考文献[2].

参考程序

      本次案例提供了完整、可供运行的参考程序,来源于Kaggle[3]和GitHub[4],建议在参考程序的基础上进行修改来完成本案例。各个程序简介如下:

ltrain.ipynb用来完成模型训练

linference.ipynb用来对训练后的模型进行推理

lunet.py定义了U-Net网络结构,参考资料[5]

lloss.py定义了损失函数(Dice Loss),参考资料[6]

ldataset.py用来定义和读取数据集

ltransform.py用来预处理数据

lutils.py定义了若干辅助函数

llogger.py用来记录训练过程(使用TensorBoard[7]功能),包括损失函数曲线等

参考程序对运行环境的要求如下,请自行调整环境至适配,否则可能无法运行:

ltorch==2.0.*

ltorchvision==0.15.*

lipykernel==6.26.*

lmatplotlib==3.8.*

lmedpy==0.4.*

lscipy==1.11.*

lnumpy==1.23.* (1.24+版本无法运行,需要先降级)

lscikit-image==0.22.*

limageio==2.31.*

ltensorboard==2.15.*

ltqdm==4.*其它细节以及示例运行结果可直接参考Kaggle[3]和GitHub[4]。

要求和建议

      在参考程序的基础上,使用深度学习技术,尝试提升该模型在脑部MRI图像上的分割效果,以程序最终输出的validation mean DSC值作为评价标准(参考程序约为90%)。可从网络结构(替换U-Net)、损失函数(替换Dice Loss)、训练过程(如优化器)等角度尝试改进,还可参考通用图像分割的一些技巧[8]。

注意事项

l提交所有代码和一份案例报告;

l案例报告应详细介绍所有改进尝试及对应的结果(包括DSC值和若干分割结果示例),无论是否成功提升模型效果,并对结果作出分析;

5实验结果

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

X.AI666

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值