【机器学习】机器学习实验方法与原则(统计有效性检验详解)

统计有效性检验

假设的评估检验:问题1

效果估计
        • 给定一个假设 在有限量数据 上的准确率
        • 该准确率是否能准确估计 在其它未见数据上 的效果?

假设的评估检验:问题2 

h 1 在数据的一个样本集上表现优于 h 2
h 1 总体 上更好的概率有多大?

抽样理论基础 

二项分布 (Binomial Distribution) 

二项分布的应用场景 

两个可能的输出 ( 成功 / 失败 ) ( Y =0 Y =1)
每次尝试成功的概率相等   Pr ( Y = 1) = p , 其中 p 是一个常数
        • n 次独立尝试
        • 随机变量 Y 1 ,…, Y n
        • iid (independent identically distribution ,独立同分布 )
R : 随机变量 , n 次尝试中 Y i = 1 的次数 ,
Pr(R = r ) ~ 二项分布
平均 ( 期望值 ): E [ R ], µ
        • 二项分布 : µ = np

估计假设准确率 – Q1.1解答 

估计的两个重要性质 

估计 偏差 (Bias)
        • 如果 S 是训练集, errorS ( h ) 是有偏差的(偏乐观),
        bias ≡ E[ error S ( h ) ] - error D ( h )
        • 对于无偏估计( bias =0), h S 必须独立不相关地产生
        → 不要在训练集上测试!
估计 方差 (Varias)
        • 即使是 S 的无偏估计, error S ( h ) 可能仍然和 error D ( h ) 不同
                • E.g. 之前的例子 (3.2% vs. 6.5%)
        • 需要选择 无偏 的且有 最小方差 的估计

估计假设准确率 – Q1.2解答 

准确率的估计可能包含多少错误?
( error S ( h ) error D ( h ) 的估计有多好 ?)
抽样理论 : confidence interval ( 置信区间 )
定义 :
        • 参数 p N % 置信区间是一个以 N % 的概率包含 p 的区间 , N % : 置信度
        ✓ 90.0% 的置信度 ,年龄: [12, 24]
        ✓ 99.9% 的置信度,年龄: [3, 60]

置信度与置信区间 

如何得到置信区间 ?
        • 坏消息 : 对二项分布来说很难
        • 好消息 : 对正态分布来说很简单
                • 通过正态分布的某个区间
                (面积)来获得

正态分布 & 二项分布 

如果满足以下条件,估计更准确:
        • S 包含 n >= 30 个样本 , h 独立产生,且每个样本独立采样
那么有大约 95% 的概率 𝑒𝑟𝑟𝑜𝑟 𝑆 (ℎ) 落在区间

问题1解答总结  

问题设定 :
        • S : n 随机独立 样本 , 独立于假设 h
        • n >= 30 & h r 个错误
真实错误率 error D 落在以下区间有 N % 置信度 :

推导置信区间的一般方法 

中心极限定理 

简化了求解置信区间的过程
问题设定
        • 独立同分布Independent, identically distributed (iid)
           的随机变量Y1 , .. , Y n ,
        • 未知分布 , 有均值 μ 和有限方差 σ 2
        • 估计均值:

样本均值 的分布 是已知的 , 即使 Y i 的分布是未知的
可以用来确定的 Y i 均值方差
  提供了估计的基础
        估计量的分布
        一些样本的均值

 假设间的差异

在样本集合 S 1 ( n 1 个随机样本 ) 上测试 h 1 , S 2 ( n 2 ) 上测试 h 2
• 选择要估计的参数
选择估计量
                • 无偏的

* 证明 : http://en.wikipedia.org/wiki/Sum_of_normally_distributed_random_variables

在样本集合 S 1 ( n 1 个随机样本 ) 上测试 h 1 , S 2 ( n 2 ) 上测试 h 2
• 选择要估计的参数
选择估计量
                • 无偏的

确定估计量所服从的正态分布

确定区间 ( L , U ) 满足 N % 的概率落在区间

假设检验 

统计有效性检验: z检验)举例

统计有效性检验:t检验 

统计有效性检验(总结)

比较算法 A B 的优劣
        • 准确率均值高就一定好? 有随机性
        • A比 B 高多少才能有把握说 A 算法更好? 显著性检验
随机变量的样本个数较多时 ( 一般 >30) z 检验 ( 利用中心极限定理 )
        • 一般用于单次评测,随机变量为 每个测试样本 的对错
随机变量的样本个数较少时 ( 一般 <=30) t 检验
        • 一般用于多次评测如重复实验,随机变量为 每次测试集 上的指标
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

X.AI666

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值