深度学习二、处理数据过拟合

1、减少网络的大小

减少网络的层数或每层的单元数

2、添加权重正则化

L1正则化:权重系数的绝对值
L2正则化:权重系数的平方

from keras import regularizers
model = models.Sequential()
model.add(layers.Dense(16, kernel_regularizer=regularizers.l2(0.001), activation=‘relu’, input_shape=(10000,)))
model.add(layers.Dense(16, kernel_regularizer=regularizers.l2(0.001), activation=‘relu’))
model.add(layers.Dense(1, activation=‘sigmoid’)

from keras import regularizers
regularizers.l1(0.001) L1正则化
regularizers.l1_l2(l1=0.001, l2=0.001)同时做L1和L2正则化

3、添加dropout正则化

dropout比率是被设为0的特征所占的比例,通常在0.2~0.5之间
测试时没有单元被舍弃,而该层的输出值需要按dropout比率缩小,因为这时比训练时有更多的单元被激活,需要加以平衡。
model = models.Sequential()
model.add(layers.Dense(16, activation=‘relu’, input_shape=(10000,)))
model.add(layers.Dropout(0.5))
model.add(layers.Dense(16, activation=‘relu’))
model.add(layers.Dropout(0.5))
model.add(layers.Dense(1, activation=‘sigmoid’)

4、获取更多的训练数据

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值