深度学习一、手写数字集识别

本文介绍了使用Keras进行深度学习,以识别手写数字为例,构建了一个包含两个Dense层的神经网络,通过编译、预处理数据、训练和评估模型,展示了深度学习在图像分类中的应用。
摘要由CSDN通过智能技术生成

1、从Keras导入自带的数据集并切分为训练集和测试集

from keras.datasets import mnist
(train_images,train_labels),(test_images,test_labels) = mnist.load_data()

train_images.shape
运行结果(60000, 28, 28)

2、网络架构

from keras import models
from keras import layers

network = models.Sequential()
network.add(layers.Dense(512,activation=‘relu’,input_shape = (28*28,)))
network.add(layers.Dense(10,activation=‘softmax’))

神经网络的核心组件是层(layer),它是一种数据处理模块,你可以将它看成数据过滤器。 进去一些数据,出来的数据变得更加有用。具体来说,层从输入数据中提取表示——我们期望 这种表示有助于解决手头的问题。大多数深度学习都是将简单的层链接起来,从而实现渐进式 的数据蒸馏(data distillation)。深度学习模型就像是数据处理的筛子,包含一系列越来越精细的 数据过滤器(即层)。

本例中的网络包含2 个 Dense 层,它们是密集连接(也叫全连接)的神经层。第二层(也 是最后一层)是一个10 路 softmax 层,它将返回一个由10 个概率值(总和为1)组成的数组。 每个概率值表示当前数字图像属于 10 个数字类别中某一个的概率。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值