1、从Keras导入自带的数据集并切分为训练集和测试集
from keras.datasets import mnist
(train_images,train_labels),(test_images,test_labels) = mnist.load_data()
train_images.shape
运行结果(60000, 28, 28)
2、网络架构
from keras import models
from keras import layers
network = models.Sequential()
network.add(layers.Dense(512,activation=‘relu’,input_shape = (28*28,)))
network.add(layers.Dense(10,activation=‘softmax’))
神经网络的核心组件是层(layer),它是一种数据处理模块,你可以将它看成数据过滤器。 进去一些数据,出来的数据变得更加有用。具体来说,层从输入数据中提取表示——我们期望 这种表示有助于解决手头的问题。大多数深度学习都是将简单的层链接起来,从而实现渐进式 的数据蒸馏(data distillation)。深度学习模型就像是数据处理的筛子,包含一系列越来越精细的 数据过滤器(即层)。
本例中的网络包含2 个 Dense 层,它们是密集连接(也叫全连接)的神经层。第二层(也 是最后一层)是一个10 路 softmax 层,它将返回一个由10 个概率值(总和为1)组成的数组。 每个概率值表示当前数字图像属于 10 个数字类别中某一个的概率。