数据结构实验之查找二:平衡二叉树

数据结构实验之查找二:平衡二叉树

Time Limit: 400 ms Memory Limit: 65536 KiB

Submit Statistic

Problem Description

根据给定的输入序列建立一棵平衡二叉树,求出建立的平衡二叉树的树根。

Input

输入一组测试数据。数据的第1行给出一个正整数N(n <= 20),N表示输入序列的元素个数;第2行给出N个正整数,按数据给定顺序建立平衡二叉树。

Output

输出平衡二叉树的树根。

Sample Input

5
88 70 61 96 120

Sample Output

70

Hint

 

Source

xam

1 LL旋转

                                                              

 

如上图所示,找到“最低失衡根结点”,上图是结点5,二叉树失衡的原因是因为结点1的存在,而结点1位于结点5“左子树的左子树”,所以要使用LL旋转来调节,只需一次旋转即可达到平衡。具体的方法是:LL旋转的对象是“最低失衡根结点”,也就是结点5,找到5的左孩子3,将3的右孩子4变成5的左孩子,最后将5变成3的右孩子,调整后的AVL树如下所示:

                                                              

2 RR旋转

RR旋转与LL旋转对称。

                                                      

如上图所示,“最低失衡根结点”是结点2,二叉树的失衡是结点6导致的,而结点6位于结点2“右子树的右子树”,所以要使用RR旋转来调节,只需一次旋转即可达到平衡。方法与LL旋转类似:RR旋转的对象是“最低失衡根结点”,这里是结点2,找到2的右孩子4,将4的左孩子3变成2的右孩子,最后将2变成4的左孩子,旋转后的结果如下图所示:

                                                                                   

 

 

3 LR旋转

LL旋转和RR旋转只需一次旋转即可达到平衡,而LR旋转和RL旋转需两次旋转才能达到平衡。

 如上图所示,“最低失衡根结点”为结点5,二叉树失衡是因为结点3的存在,结点3位于结点5“左子树的右子树”,所以使用LR旋转来调节。方法:(1)先对最低失衡根结点的左孩子(结点2)进行RR旋转;(2)再对最低失衡根结点(结点5)进行LL旋转。下图演示了调整过程。

 

4 RL旋转

RL旋转与LR旋转对称,先LL旋转,在RR旋转。

分析过程与LR相似。旋转步骤:(1)先对最低失衡结点右孩子(结点5)LL旋转;(2)在对最低失衡结点(结点2)RR旋转。旋转过程如下:

 

 

#include <string.h>
#include<stdio.h>
#include<stdlib.h>
typedef struct st
{
    struct st *r,*l;
    int d,dp;
} tree;
int maxn(int x,int y)
{
    if(x>y)
        return x;
    else return y;
}
int deep(tree *t)
{
    if(t==NULL)
        return -1;
    else return t->dp;

}
tree *LL(tree *t)//左左情况进行右旋
{
    tree *p;
    p=t->l;
    t->l=p->r;
    p->r=t;
    p->dp=maxn(deep(p->l),t->dp)+1;
    t->dp=maxn(deep(t->l),deep(t->r))+1;
    return p;
}
tree *RR(tree *t)
{
    tree *p;
    p=t->r;
    t->r=p->l;
    p->l=t;
    p->dp=maxn(deep(p->r),t->dp)+1;
    t->dp=maxn(deep(t->l),deep(t->r))+1;
    return p;
}
tree *RL(tree *t)
{
    t->r=LL(t->r);
    return RR(t);
}
tree *LR(tree *t)//左右情况先进行左旋(右右),然后左旋(左左)
{
    t->l=RR(t->l);
    return LL(t);
}
tree *creat(tree *t,int x)
{
    if(t==NULL)
    {
        t=new tree;
        t->l=NULL;
        t->r=NULL;
        t->d=x;
        t->dp=0;
    }
    else if(x<t->d)
    {
        t->l=creat(t->l,x);
        if(deep(t->l)-deep(t->r)>1)
        {
            if(x<t->l->d)
            {
                t=LL(t);
            }
            else t=LR(t);
        }
    }
    else if(x>t->d)
    {
        t->r=creat(t->r,x);
        if(deep(t->r)-deep(t->l)>1)
        {
            if(x>t->r->d)
            {
                t=RR(t);
            }
            else t=RL(t);
        }
    }
    t->dp=maxn(deep(t->l),deep(t->r))+1;及时更新每个节点的深度
    return t;
}
int main()
{
    int i,n,x;
    scanf("%d",&n);
    tree *h;
    h=NULL;
    for(i=1; i<=n; i++)
    {
        scanf("%d",&x);
        h=creat(h,x);
    }
    printf("%d\n",h->d);
    return 0;
}

 

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值