数据结构实验之查找二:平衡二叉树
Time Limit: 400 ms Memory Limit: 65536 KiB
Problem Description
根据给定的输入序列建立一棵平衡二叉树,求出建立的平衡二叉树的树根。
Input
输入一组测试数据。数据的第1行给出一个正整数N(n <= 20),N表示输入序列的元素个数;第2行给出N个正整数,按数据给定顺序建立平衡二叉树。
Output
输出平衡二叉树的树根。
Sample Input
5
88 70 61 96 120
Sample Output
70
Hint
Source
xam
1 LL旋转
如上图所示,找到“最低失衡根结点”,上图是结点5,二叉树失衡的原因是因为结点1的存在,而结点1位于结点5“左子树的左子树”,所以要使用LL旋转来调节,只需一次旋转即可达到平衡。具体的方法是:LL旋转的对象是“最低失衡根结点”,也就是结点5,找到5的左孩子3,将3的右孩子4变成5的左孩子,最后将5变成3的右孩子,调整后的AVL树如下所示:
2 RR旋转
RR旋转与LL旋转对称。
如上图所示,“最低失衡根结点”是结点2,二叉树的失衡是结点6导致的,而结点6位于结点2“右子树的右子树”,所以要使用RR旋转来调节,只需一次旋转即可达到平衡。方法与LL旋转类似:RR旋转的对象是“最低失衡根结点”,这里是结点2,找到2的右孩子4,将4的左孩子3变成2的右孩子,最后将2变成4的左孩子,旋转后的结果如下图所示:
3 LR旋转
LL旋转和RR旋转只需一次旋转即可达到平衡,而LR旋转和RL旋转需两次旋转才能达到平衡。
如上图所示,“最低失衡根结点”为结点5,二叉树失衡是因为结点3的存在,结点3位于结点5“左子树的右子树”,所以使用LR旋转来调节。方法:(1)先对最低失衡根结点的左孩子(结点2)进行RR旋转;(2)再对最低失衡根结点(结点5)进行LL旋转。下图演示了调整过程。
4 RL旋转
RL旋转与LR旋转对称,先LL旋转,在RR旋转。
分析过程与LR相似。旋转步骤:(1)先对最低失衡结点右孩子(结点5)LL旋转;(2)在对最低失衡结点(结点2)RR旋转。旋转过程如下:
#include <string.h>
#include<stdio.h>
#include<stdlib.h>
typedef struct st
{
struct st *r,*l;
int d,dp;
} tree;
int maxn(int x,int y)
{
if(x>y)
return x;
else return y;
}
int deep(tree *t)
{
if(t==NULL)
return -1;
else return t->dp;
}
tree *LL(tree *t)//左左情况进行右旋
{
tree *p;
p=t->l;
t->l=p->r;
p->r=t;
p->dp=maxn(deep(p->l),t->dp)+1;
t->dp=maxn(deep(t->l),deep(t->r))+1;
return p;
}
tree *RR(tree *t)
{
tree *p;
p=t->r;
t->r=p->l;
p->l=t;
p->dp=maxn(deep(p->r),t->dp)+1;
t->dp=maxn(deep(t->l),deep(t->r))+1;
return p;
}
tree *RL(tree *t)
{
t->r=LL(t->r);
return RR(t);
}
tree *LR(tree *t)//左右情况先进行左旋(右右),然后左旋(左左)
{
t->l=RR(t->l);
return LL(t);
}
tree *creat(tree *t,int x)
{
if(t==NULL)
{
t=new tree;
t->l=NULL;
t->r=NULL;
t->d=x;
t->dp=0;
}
else if(x<t->d)
{
t->l=creat(t->l,x);
if(deep(t->l)-deep(t->r)>1)
{
if(x<t->l->d)
{
t=LL(t);
}
else t=LR(t);
}
}
else if(x>t->d)
{
t->r=creat(t->r,x);
if(deep(t->r)-deep(t->l)>1)
{
if(x>t->r->d)
{
t=RR(t);
}
else t=RL(t);
}
}
t->dp=maxn(deep(t->l),deep(t->r))+1;及时更新每个节点的深度
return t;
}
int main()
{
int i,n,x;
scanf("%d",&n);
tree *h;
h=NULL;
for(i=1; i<=n; i++)
{
scanf("%d",&x);
h=creat(h,x);
}
printf("%d\n",h->d);
return 0;
}