题目大意
给出一个图,在这个图的补图中给定一个点,求这个点到其他所有点的距离,如果无法到达则输出-1.
题目分析
因为这个图的点数比较多,因此遍历所有边很明显是不可能的,铁定超时,因此只能想一些办法来处理,我们可以将所有遍历过的点塞入链表中,如果每一次有bfs求出一些节点的值之后,那么则将这些节点从链表中删除,这样每次遍历的点将会少很多,这样就可以在O(n+m)的时间内得到结果。
#include <set>
#include <list>
#include <queue>
#include <vector>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int maxn = 2e5+5;
typedef pair<int,int> PII;
int dist[maxn];
list <int> LIST;
set <PII> SET;
vector <list <int>::iterator > VEC;
vector <int> vec;
void bfs(int S){
queue <int> que;
que.push(S);
while(!que.empty()){
int u = que.front(); que.pop();
VEC.clear();
for(list<int>::iterator it = LIST.begin(); it != LIST.end(); it++){
int v = *it;
if(SET.count(make_pair(u, v)) == 0){
dist[v] = dist[u] + 1;
que.push(v);
VEC.push_back(it);
}
}
for(int i = 0; i < VEC.size(); i++)
LIST.erase(VEC[i]);
}
}
int main(){
int T,N,M,S;
scanf("%d", &T);
while(T--){
memset(dist, 0, sizeof(dist));
scanf("%d%d", &N, &M);
int from, to;
SET.clear();
while(M--){
scanf("%d%d", &from, &to);
SET.insert(make_pair(from, to));
SET.insert(make_pair(to, from));
}
scanf("%d", &S);
for(int i = 1; i <= N; i++)
if(i != S) LIST.push_back(i);
bfs(S);
vec.clear();
for(int i = 1; i <= N; i++)
if(i != S) vec.push_back(dist[i]);
for(int i = 0; i < vec.size(); i++)
if(i != vec.size()-1){
if(vec[i]) printf("%d ", vec[i]);
else printf("-1 ");
}
else{
if(vec[i]) printf("%d\n", vec[i]);
else printf("-1\n");
}
}
return 0;
}