2016弱校联盟十一专场10.5 F Fibonacci of Fibonacci(矩阵快速幂+找循环节)

题目分析

这道题第一步肯定是找循环节,因为要求的是 Fn ,但是这里的n = Fn ,因此需要求循环节,其实就是用map处理一下而已,会发现循环正好是从(0,1)开始的为26880696,这题求余给的数很巧!!然后就可以先对下标进行矩阵快速幂,得到一个数之后再对上面进行矩阵快速幂即可。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long LL;
const LL mod = 20160519;
const LL MOD = 26880696;


struct Matirx{
    LL mat[2][2];
};

Matirx Mul1(Matirx a, Matirx b){
    Matirx ret;
    for(int i = 0; i < 2; i++){
        for(int j = 0; j < 2; j++){
             ret.mat[i][j] = 0;
             for(int k = 0; k < 2; k++)
                ret.mat[i][j] += a.mat[i][k]*b.mat[k][j];
             ret.mat[i][j] %= MOD;
        }
    }
    return ret;
}

Matirx Mul2(Matirx a, Matirx b){
    Matirx ret;
    for(int i = 0; i < 2; i++){
        for(int j = 0; j < 2; j++){
             ret.mat[i][j] = 0;
             for(int k = 0; k < 2; k++)
                ret.mat[i][j] += a.mat[i][k]*b.mat[k][j];
             ret.mat[i][j] %= mod;
        }
    }
    return ret;
}

Matirx Mat_pow1(Matirx a, int n){
    Matirx ret;
    memset(ret.mat, 0, sizeof(ret.mat));
    for(int i = 0; i < 2; i++) ret.mat[i][i] = 1;
    while(n){
        if(n&1) ret = Mul1(ret, a);
        a = Mul1(a, a);
        n >>= 1;
    }
    return ret;
}

Matirx Mat_pow2(Matirx a, int n){
    Matirx ret;
    memset(ret.mat, 0, sizeof(ret.mat));
    for(int i = 0; i < 2; i++) ret.mat[i][i] = 1LL;
    while(n){
        if(n&1) ret = Mul2(ret, a);
        a = Mul2(a, a);
        n >>= 1;
    }
    return ret;
}

void init(Matirx &temp){
    temp.mat[0][0] = 1;
    temp.mat[0][1] = 1;
    temp.mat[1][0] = 1;
    temp.mat[1][1] = 0;
}

int main(){
    int T, n;
    scanf("%d", &T);
    while(T--){
        scanf("%d", &n);
        Matirx temp;
        init(temp);
        Matirx ret = Mat_pow1(temp, n-1);
        init(temp);
        Matirx ans = Mat_pow2(temp, ret.mat[0][0]-1);
        printf("%lld\n", ans.mat[0][0]);
    }
    return 0;
}


#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define LL long long
const int maxn = 25;
LL bit[maxn], dp[maxn][15][5];

LL dfs(int pos, int pre, int x, bool zero, bool limit){
    if(pos < 1) return 1LL;
    if(!limit && dp[pos][pre][x] != -1) return dp[pos][pre][x];
    int len = limit?bit[pos]:9;
    LL ret = 0;
    for(int i = 0; i <= len; i++){
        if(zero) ret += dfs(pos-1, i, x, zero&&i==0, limit&&i==len);
        else{
            int temp = x;
            if(i < pre){
                if(temp == 0) continue;
                temp = 1;
            }
            else if(i > pre){
                if(temp == 1) continue;
                temp = 0;
            }
            ret += dfs(pos-1, i, temp, false, limit&&i==len);
        }
    }
    if(!limit) dp[pos][pre][x] = ret;
    return ret;
}

LL solve(LL n){
    int len = 0;
    while(n){
        bit[++len] = n%10;
        n /= 10;
    }
    return dfs(len, 0, 2, true, true);
}

int main(){
    int T;
    LL l, r;
    scanf("%d", &T);
    memset(dp, -1, sizeof(dp));
    while(T--){
        scanf("%lld%lld", &l, &r);
        printf("%lld\n", solve(r) - solve(l-1));
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值