Total variation models for variable lighting face recognition

摘要

  在本文中,我们提出了对数总变分(LTV)模型用于人脸识别在不同光照下,包括自然光照条件下,我们很少知道的强度,方向,或光源的数量。该模型能够对单张人脸图像进行分解,得到光照不变的人脸结构,并将其用于人脸识别。该模型受SQI模型的启发,具有更好的保边能力和更简单的参数选择。这个模型的优点是它不需要任何照明假设,也不需要任何训练。在使用Yale和CMU的PIE人脸数据库以及包含765名受试者的户外光照条件下的人脸数据库的测试中,LTV模型达到了很高的识别率。

1 引言

  光照归一化是计算机视觉和模式识别领域的一个重要研究课题。它最重要的应用之一是在不同光照条件下的人脸识别。[1]和[48]在实验上都已经证明,在人脸识别中,光照引起的变化比个体之间的内在差异更重要。各种人脸识别方法已经被提出,包括特征人脸[42]、Fisherface[5]、概率和贝叶斯匹配[25]、子空间LDA[49]、主动形状模型和主动外观模型[23]、LFA[27]、EBGM[45]、SVM[17]。然而,现有算法的性能对光照变化非常敏感。针对不同光照条件下的人脸识别问题,提出了多种方法。主要的方法有:光照锥方法[6]、[14]、基于球面谐波的方法[4]、[29]、[47]、基于商像的方法[35]、[34]、[43]、基于相关滤波器的方法[32]。然而,他们中的大多数的表现仍然离理想很远,但许多这些方法需要知识的来源或培训数据,这是不实际的大多数现实世界的场景。让我们看一些最近的方法为例:李的9点光[24]方法需要不同的图像之间的精确对准,Savvides的Corefaces[32]需要一些训练图像达到完美的结果,王等人的自商图像[43]的识别率仍有改进的余地。
  除了为人脸识别而设计的方法外,还有从一般图像中去除灯光效果的方法。最常见的,一个图像模型I(x,y)被认为是反射率R和照度效果L的乘积[19]。从输入图像I中获取R的问题是不适定的[30]。假设L的变化速度比R慢,同态滤波[38]通过对图像的对数进行高通滤波来分离速度快和速度慢的变化。然而,这个假设对于自然光照条件下的图像不成立,在自然光照条件下,阴影边界可能会使L发生突变,因此,这些方法会产生晕轮伪影。同样,Land的“Retinex”模型[22]使用I与低通图像L的比值作为R的估计。Jobson[20]通过结合几个低通副本L减少了人工光环。为了减少人工光晕,不连续性保持滤波可以用来估计L,如各向异性扩散[28],双边滤波[40],或均值漂移滤波[11]。相关工作包括Tumblin和Turk[41]使用各向异性扩散的LCIS, Durand和Dorsey[12]使用双边滤波,以及Brajovic[7]、[8]在变分框架内感知调整加权最小二乘。Kimmel等[21]和Elad等[13]对Retinex和相关的照明补偿方法进行了很好的综述。一些相关工作的人脸识别结果在[16],[36]中有报道。这些工作大大减少了人工光环,尽管不是全部。然而,这些模型的参数选择大多是经验的和复杂的,其中参数的数量可以高达8[41]左右。
  在[44],[43]中,Wang等人提出了SQI模型,该模型与Brajovic[7]的前一个想法相似。在他们的模型中,光照是通过对平滑的图像本身进行分割而归一化的。该方法非常简单,可以应用于任何单幅图像。然而,他们所使用的加权高斯滤波器在低频照明场中难以保持清晰的边缘。本文利用全变分模型的保边能力,克服了这一局限性。我们提出利用TV- l1模型[9]对图像进行分解。与现有的解决方案相比,该方案具有独特的优点,特别是参数选择简单。我们在第2.3节对TV-L1模型的原始分析和第3节的实验评估中展示了这些优势。

2 方法

  在本节中

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值