论文解读
文章平均质量分 92
论文翻译
车娜希n
这个作者很懒,什么都没留下…
展开
-
CenterFace: Joint Face Detection and Alignment Using Face as Point
摘要 无约束环境下的人脸检测和对齐通常部署在内存有限、计算能力低的边缘设备上。本文提出了一种称为(CenterFace)的单阶段方法,可以实时快速、高精度地同时预测人脸边框和特征点位置。所提出的方法也属于无锚类。这是通过以下方法实现的:(a)通过语义地图学习人脸存在的概率(b)学习边界框、偏移量和可能包含人脸的每个位置的五个特征点。具体地说,该方法可以在单个CPU内核上实时运行,使用NVIDIA 2080TI以200 FPS的速度处理VGA分辨率图像,并且可以同时实现更高的精度(Wider Face V原创 2021-11-13 22:06:44 · 3002 阅读 · 0 评论 -
Focal Loss for Dense Object Detection
论文地址:https://arxiv.org/abs/1708.02002摘要 迄今为止,最高精度的物体检测器是基于由R-CNN推广的two-stage方法,其中分类器被应用于候选物体位置的稀疏集合。相比之下,在可能的物体位置的规则密集采样中应用的单级检测器具有更快和更简单的潜力,但是迄今为止已经落后于两级检测器的精度。在本文中,我们调查为什么会出现这种情况。我们发现在密集检测器的训练过程中遇到的极端前景-背景类不平衡是主要原因。我们建议通过重塑标准交叉熵损失来解决这种类别不平衡,这样它就降低了分配给原创 2021-06-29 15:42:54 · 1255 阅读 · 0 评论 -
CBAM: Convolutional Block Attention Module
摘要 我们提出卷积块注意模块(CBAM),一个简单而有效的前馈卷积神经网络的注意模块。给定一个中间特征图,我们的模块沿着两个独立的维度(通道和空间)依次推断注意力权重,然后将注意力图乘以输入特征图,以进行自适应特征细化。因为CBAM是一个轻量级的通用模块,它可以无缝集成到任何CNN架构中,开销可以忽略不计,并且可以与基本CNN一起进行端到端训练。我们通过在ImageNet-1K、MS COCO检测和VOC 2007检测数据集上的大量实验来验证我们的CBAM。我们的实验表明,各种模型在分类和检测性能上的改原创 2021-06-21 16:45:50 · 394 阅读 · 0 评论 -
The Devil of Face Recognition is in the Noise
摘要人脸识别数据集的规模越来越大,这使得我们能够训练用于人脸识别的强卷积网络。虽然已经设计了各种架构和损失函数,但我们对现有数据集固有的标签噪声的来源和后果的理解仍然有限。我们做出了以下贡献:1)我们贡献了流行人脸数据库的清洁子集,即MegaFace和MS-Celebe-1M数据集,并构建了一个新的大规模噪声控制的IMDb人脸数据集。2)利用原始数据集和清洗后的子集,我们对MegaFace和MS-Cele1m的标签噪声特性进行了剖析和分析。我们表明,要达到干净子集产生的相同精度,需要多几个数量级的样本。3原创 2021-05-13 10:23:00 · 362 阅读 · 0 评论 -
(DeepID2)Deep Learning Face Representation by Joint Identification-Verification
https://arxiv.org/pdf/1406.4773.pdf摘要 人脸识别的关键挑战是开发有效的特征表示,以减少同一人之间的差异,同时扩大不同人之间的差异。在本文中,我们证明了通过深度学习和使用人脸识别和验证信号作为监督可以很好地解决这个问题。深度识别验证功能(DeepID2)是通过精心设计的深度卷积网络来学习的。人脸识别任务通过将从不同身份提取的深度ID2分开来增加人与人之间的差异,而人脸验证任务通过将从相同身份提取的深度ID2拉到一起来减少人与人之间的差异,这两者对于人脸识别都是必不可少原创 2021-05-11 12:00:01 · 484 阅读 · 0 评论 -
Squeeze-and-Excitation Networks
摘要卷积神经网络建立在卷积运算的基础上,通过融合局部感受野内的空间信息和通道信息来提取信息特征。为了提高网络的表示能力,许多现有的工作已经显示出增强空间编码的好处。在这项工作中,我们专注于通道,并提出了一种新颖的架构单元,我们称之为“Squeeze-and-Excitation”(SE)块,通过显式地建模通道之间的相互依赖关系,自适应地重新校准通道式的特征响应。通过将这些块堆叠在一起,我们证明了我们可以构建SENet架构,在具有挑战性的数据集中可以进行泛化地非常好。关键的是,我们发现SE块以微小的计算成本原创 2021-04-07 11:55:18 · 10872 阅读 · 0 评论 -
MobileFaceNets: Efficient CNNs for Accurate Real- Time Face Verification on Mobile Devices
摘要 我们展示了一类极其高效的CNN模型MobileFaceNets,它使用不到100万个参数,专门为移动和嵌入式设备上的高精度实时人脸验证而定制。我们首先简单分析了普通移动网络在人脸验证方面的弱点。我们专门设计的手机已经很好地克服了这个弱点。在相同的实验条件下,我们的MobileFaceNets获得了显著更高的精度,以及比MobileNetV2高出2倍以上的实际加速。经过ArcFace loss在精致的MS-Celebe-1M上的训练,我们4.0MB大小的单个MobileFaceNet在LFW上实现了原创 2021-03-25 16:40:49 · 787 阅读 · 0 评论 -
Mask R-CNN
https://arxiv.org/abs/1703.06870摘要我们提供了一个概念简单、灵活、通用的对象实例分割框架。我们的方法有效地检测图像中的目标,同时为每个实例生成高质量的分割掩模。该方法被称为Mask R-CNN,它扩展了Faster R-CNN,增加了一个用于预测对象蒙版的分支,与现有的用于边界盒识别的分支并行。Mask R-CNN是简单的训练,只增加一个小开销更快的R-CNN,运行在5帧每秒。此外,Mask R-CNN很容易推广到其他任务,例如,让我们在相同的框架下估计人体姿势。我们展示原创 2020-10-25 16:35:43 · 483 阅读 · 0 评论 -
Inception-v4,Inception-ResNet and the Impact of Residual Connections on Learning
论文链接:https://arxiv.org/pdf/1602.07261.pdfhttps://arxiv.org/pdf/1602.07261v1.pdf摘要近些年,超深度卷积网络成为图像识别领域的核心算法。其中,Inception结构在图像分类中表现优秀,并且计算代价很低。最近,残差与更加传统的结构相结合,在ILSVRC挑战中获得Start-of-art的结果(与Inception-v3)的分类精度差不多。那么,是不是结合残差连接与Inception结构能够产生更好的结果。因此,我们给出了充足的原创 2020-10-24 10:07:00 · 386 阅读 · 0 评论 -
(FPN)Feature Pyramid Networks for Object Detection
摘要特征金字塔是识别系统中用于检测不同尺度目标的基本组件。但最近的深度学习目标检测器已经避免了金字塔表示,部分原因是它们是计算和内存密集型的。在本文中,我们利用深度卷积网络内在的多尺度、金字塔分级来构造具有很少额外成本的特征金字塔。开发了一种具有横向连接的自顶向下架构,用于在所有尺度上构建高级语义特征映射。这种称为特征金字塔网络(FPN)的架构在几个应用程序中作为通用特征提取器表现出了显著的改进。在一个基本的Faster R-CNN系统中使用FPN,没有任何不必要的东西,我们的方法可以在COCO检测基准数原创 2020-10-23 10:43:30 · 363 阅读 · 0 评论 -
Focal Loss for Dense Object Detection
摘要迄今为止最高精度的物体检测器是由两级组成的检测器,典型代表是R-CNN,其中R-CNN的分类器被应用于有很少元素的预选框集。相反,一级检测器被更加广泛地使用,密集的区域预选使网络有可能变得更快更简单,但到目前为止,其检测的准确性仍落后于两级检测器。在本文中,我们讨论了为什么会出现这样的情况。我们发现在训练密集检测器的过程中遇到的极端的前景 - 背景类不平衡是造成一级检测器准确性较差的主要原因。我们提出解决这一类不平衡问题的方法:通过重塑标准交叉熵损失,以降低分配给分类良好的样本的损失。在训练阶段,我们原创 2020-10-22 16:06:58 · 2287 阅读 · 0 评论 -
SSD:SingleShot MultiBox Detector
http://noahsnail.com/2017/12/11/2017-12-11-Single%20Shot%20Multi%20Box%20Detector论文翻译——中英文对照/摘要我们提出了一种使用单个深度神经网络来检测图像中的目标的方法。我们的方法命名为SSD,将边界框的输出空间离散化为不同长宽比的一组默认框和并缩放每个特征映射的位置。在预测时,网络会在每个默认框中为每个目标类别的出现生成分数,并对框进行调整以更好地匹配目标形状。此外,网络还结合了不同分辨率的多个特征映射的预测,自然地处理各原创 2020-10-21 19:10:49 · 189 阅读 · 0 评论 -
FAST-RCNN
RBG的RCNN使用region proposal(具体用的是Selective Search Koen van de Sande: Segmentation as Selective Search for Object Recognition)来得到有可能得到是object的若干(大概10^3量级)图像局部区域,然后把这些区域分别输入到CNN中,得到区域的feature,再在feature上加上分类器,判断feature对应的区域是属于具体某类object还是背景。当然,RBG还用了区域对应的fea原创 2020-10-21 16:39:36 · 1609 阅读 · 0 评论 -
(R-CNN)Rich feature hierarchies for accurate object detection and semantic segmentation
论文地址:https://arxiv.org/abs/1311.2524 图片分类不需要定位,而物体检测需要定位出物体的位置,也就是相当于把物体的bounding box检测出来,还有一点物体检测是要把所有图片中的物体都识别定位出来。摘要 在标准的PASCAL VOC 数据集上测量的对象检测性能在过去几年已经稳定。最佳性能的方法通常是一个复杂的混合系统,它通常将多个低级图像特征与高级上下文组合起来。在本文中,我们提出了一个简单和可扩展的检测算法,相对于以前在VOC2012上的最佳结果(实现mAP原创 2020-10-21 11:18:27 · 488 阅读 · 0 评论 -
(Inceptionv3)Rethinking the Inception Architecture for Computer Vision
翻译论文汇总:https://github.com/SnailTyan/deep-learning-papers-translationRethinking the Inception Architecture for Computer Vision摘要 对许多任务而言,卷积网络是目前最新的计算机视觉解决方案的核心。从2014年开始,深度卷积网络开始变成主流,在各种基准数据集上都取得了实质性成果。对于大多数任务而言,虽然增加的模型大小和计算成本都趋向于转化为直接的质量收益(只要提供足够的标注数据去训原创 2020-10-21 11:13:54 · 453 阅读 · 0 评论 -
(Inceptionv2)Batch Normalization Accelerating Deep Network Training by Reducing Internal Covariate S
https://arxiv.org/abs/1502.03167具有以下的优点:a)可以设置较大的初始学习率,并且减少对参数初始化的依赖,提高了训练速度;b)这是个正则化模型,因此可以去除dropout和降低L2正则约束参数;c)不需要局部响应归一化层;d)能防止网络陷入饱和,即消除梯度弥散。摘要深层神经网络的训练是复杂的,因为在训练过程中,随着前一层的参数的变化,每一层的输入的分布也会发生变化。这需要较低的学习率和仔细的参数初始化,从而降低了训练的速度,并且使训练具有饱和非线性的模型变得非常原创 2020-10-19 19:33:02 · 176 阅读 · 0 评论 -
(Inceptionv1)Going Deeper with Convolutions
论文地址:https://arxiv.org/abs/1409.4842摘要 我们提出了一个深度卷积神经网络架构Inception,它在ImageNet的大规模视觉识别挑战赛2014(ILSVRC14)的分类和检测上取得了新的最好结果。该体系架构的主要特点是在网络中改进了计算资源的利用率。这是由于精心的设计而得以实现的。在增加网络深度和宽度的同时保持了计算预算不变。为了优化质量,架构的设计以Hebbian理论和多尺度处理为基础。我们在提交ILSVRC14时称该网络为GoogLeNet,一个22层的深度原创 2020-10-19 11:57:16 · 188 阅读 · 0 评论 -
(ResNet)Deep Residual Learning for Image Recognition
论文地址:https://arxiv.org/abs/1512.03385摘要 越深的神经网络训练起来越困难。本文展示了一种残差学习框架,能够简化使那些非常深的网络的训练,该框架使得层能根据其输入来学习残差函数而非原始函数(unreferenced functions)。本文提供了全面的依据表明,这些残差网络的优化更简单,而且能由更深的层来获得更高的准确率。本文在ImageNet数据集上使用了一个152层深的网络来评估我们的残差网络,虽然它相当于8倍深的VGG网络,但是在本文的框架中仍然只具有很低的复原创 2020-10-19 11:33:39 · 533 阅读 · 0 评论 -
MobileNetV2
什么是MobileNetV2模型MobileNet模型是Google针对手机等嵌入式设备提出的一种轻量级的深层神经网络,其使用的核心思想便是depthwise separable convolution。MobileNetV2是MobileNet的升级版,它具有两个特征点:1、Inverted residuals,在ResNet50里我们认识到一个结构,bottleneck design结构,在3x3网络结构前利用1x1卷积降维,在3x3网络结构后,利用1x1卷积升维,相比直接使用3x3网络卷积效果更原创 2020-10-19 11:24:29 · 277 阅读 · 0 评论 -
(VGG)Very Deep Convolutional Networks for Large-Scale Image Recognition阅读笔记
论文地址:https://arxiv.org/abs/1409.1556原创 2020-10-19 10:19:14 · 418 阅读 · 0 评论 -
Directional Illumination Estimation Sets and Multilevel Matching Metric for Illumination-Robust Face
摘要如何提高复杂光照条件下人脸识别的性能是一个具有挑战性的课题。基于光照估计的光照不变提取技术被广泛用于缓解光照变化对人脸识别的不利影响。现有的方法大多仅利用光照特性缓慢变化来实现光照估计,导致在光照条件复杂的情况下,光照估计和光照不变量提取不准确。为了缓解这个问题,根据Lambertian反射模型,我们提出一个创新的照明估计方法从面部图像提取方向照明不变集。方向光照不变量集不仅能更好地保存人脸的基本特征,还能在很大程度上减少快速光变化带来的不利影响。此外,我们提出一个多层次匹配指标类别抚慰阳离子通过内原创 2020-09-26 10:42:28 · 194 阅读 · 0 评论 -
SVD Face: Illumination-Invariant Face Representation
摘要 在本文,我们提出了一种新的方法来提取光照不变特征用于在不同的光照下人脸识别和验证。奇异值分解(SVD)的归一化系数对不同光照条件不敏感,受此启发,我们开发了一种简单而强大的描述人脸底层结构的方案,即所谓的奇异值分解人脸。与之前的方法仍然存在细节缺失的问题相比,我们的奇异值分解人脸通过对奇异值分解系数进行松弛,极大地保留了原始图像的纹理。理论分析表明,我们的SVD人脸是一个光照不变的测度,能够发现人脸图像中有意义的成分(如眼睛、嘴巴等),同时抑制各种光照的影响。在Yale B和我们的光照人脸(IF)原创 2020-09-25 09:45:48 · 331 阅读 · 0 评论 -
Total variation models for variable lighting face recognition
摘要 在本文中,我们提出了对数总变分(LTV)模型用于人脸识别在不同光照下,包括自然光照条件下,我们很少知道的强度,方向,或光源的数量。该模型能够对单张人脸图像进行分解,得到光照不变的人脸结构,并将其用于人脸识别。该模型受SQI模型的启发,具有更好的保边能力和更简单的参数选择。这个模型的优点是它不需要任何照明假设,也不需要任何训练。在使用Yale和CMU的PIE人脸数据库以及包含765名受试者的户外光照条件下的人脸数据库的测试中,LTV模型达到了很高的识别率。1 引言 光照归一化是计算机视觉和模式原创 2020-09-23 17:48:17 · 197 阅读 · 0 评论 -
Illumination Normalization Based on Weber’s Law With Application to Face Recognition
摘要韦伯定律表明,对于一个刺激,最小的知觉变化和背景之间的比率是一个常数,这意味着人们不是在绝对条件下感知的,而是在相对条件下感知的。受此启发,我们在不同光照下通过一个比率图像,开发和分析了一种新的光照不敏感的图像,称为“Weber-face”,计算局部强度变化和背景之间的比率。在cmu - pie和Yale B face数据库上的实验结果表明,weber -face的性能优于现有的代表性方法。1 引言 人脸自动识别在过去的几十年中已经成为一个非常活跃的话题。然而,不受控光照条件下的人脸识别仍然对[原创 2020-09-23 15:41:59 · 533 阅读 · 0 评论 -
Fast self-quotient image method for lighting normalization based on modified Gaussian filter kernel
摘要 自商图像(SQI)方法是一种在不同光照条件下进行人脸鲁棒识别的好方法,该方法是由王海涛、李振民、王阳胜、张建军等人提出的。 这种方法被科学界广泛接受,并在最近的研究中得到广泛应用,如[2-5]。然而,他们中的大多数人只在很小的光照变化时使用SQI。2013年,Ognjen Arandjelovic[6]探索了将这种方法用于大范围照明变化的可能性,并表明它比之前认为的更有效。与此同时,本文对该方法进行了大量修改。2007年,原始SQI方法的作者提出了形态商图像(MQI)及其动态版本(DMQI)[原创 2020-09-09 21:49:55 · 215 阅读 · 0 评论 -
Guided image filtering(引导滤波)
摘要 本文提出了一种新的显式图像滤波引导滤波器。引导滤波器从局部线性模型中导出,通过考虑引导图像的内容(可以是输入图像本身,也可以是另一个不同的图像)来生成滤波输出图像。那个引导滤波器可以像流行的双边滤波器一样作为边缘保持平滑算子[1],但是在边缘附近有更好的表现。它还与消光拉普拉斯矩阵[2]有理论联系,因此是一个比平滑算子更通用的概念,可以更好地利用制导图像中的结构。此外,引导滤波器具有快速的非线性时间算法,其计算复杂度与滤波核的大小无关。我们证明了引导滤波器在各种计算机视觉和计算机图形学应用中都是有原创 2020-09-09 15:53:38 · 2386 阅读 · 0 评论 -
(SQI)Face Recognition under Varying Lighting Conditions Using Self Quotient Image
摘要本文引入了自商图像(SQI)的概念,用于在不同光照条件下进行鲁棒人脸识别。它是基于商图像法[4][5]来实现光照不变性的。然而,SQI有三个优点:(1)它只需要一张人脸图像就可以提取出人脸的内在光照不变特性,同时去除与光照相对应的外部因素。(2) 不需要对齐。(3) 它在阴影下有效。对算法适用条件进行了理论分析,提出了一种计算SQI的非迭代滤波算法。实验结果验证了该方法在不同光照条件下鲁棒人脸识别的有效性。1 引言 光照变化是人脸识别中最困难的问题之一,近年来备受关注[1-13]。众所周知,由于原创 2020-09-05 15:49:00 · 389 阅读 · 0 评论 -
Face Recognition using Gabor Filters
摘要 基于Gabor的人脸表示在人脸识别中取得了巨大的成功。本文提出了一种利用Gabor特征训练的神经网络进行人脸识别的新算法。在不同尺度上对一系列图像进行有效的卷积。本文的两个新贡献是:RMS对比度的缩放和变形作为图像识别完善的一个进步。基于多层感知器(MLP)结构和反向推进算法,结合Gabor-jet的卷积滤波响应,实现了人脸识别。在不同光照条件下采集的变形人脸图像数据库上,验证了该算法的有效性。1 引言 Gabor特征在计算机视觉、图像处理、模式识别等领域得到了广泛的关注。使用Gabor过滤原创 2020-08-26 22:51:31 · 340 阅读 · 0 评论 -
The Quotient Image: Class Based Recognition and Synthesis Under Varying Illumination Conditions
摘要 本文针对不同光照条件下的“基于类”识别和图像合成问题进行了研究。基于类的合成与识别任务如下:给定一个目标的单一输入图像,与同一类其他目标在不同光照条件下的样本图像,获取其等价关系(通过生成新的图像或通过不变量)在对象的所有图像中对应新的光照条件。 我们的方法的关键结果是基于光照不变的特征图像的提取,我们称之为“商”图像,它能够从一个输入图像和一个非常小的类其他对象样本的光照变化下解析生成图像空间-在我们的实验中,只有两个对象。在许多情况下,识别结果远远超过传统方法,考虑到样本图像数据库的规模和原创 2020-07-30 15:37:07 · 231 阅读 · 0 评论 -
Learning Pose-Aware Models for Pose-Invariant Face Recognition in the Wild
摘要 我们提出了一种方法,旨在推动边界的无约束的人脸识别在野外,以极端平面外姿态变化的重点。现有的方法要么期望单个模型通过对大量数据的训练来学习姿态不变性,要么期望通过将人脸对准一个正面姿态来对图像进行归一化。与此相反,我们的方法被设计来明确处理姿态变化。我们提出的姿态感知模型(PAM)使用几个特定于姿态的深度卷积神经网络(CNN)处理人脸图像。3D渲染用于从输入图像中合成多个面部姿态,既训练这些模型,又为测试时的姿态变化提供额外的鲁棒性。本文对IARPA Janus基准测试A (IJB-A)进行了广泛原创 2020-07-22 23:53:50 · 336 阅读 · 0 评论 -
FPGA Based Hardware Design of PCA for Face Recognition
摘要 本文主要研究了目前最流行的线性无监督降维算法——主成分分析法(PCA)所需模块的硬件实现。利用主成分分析算法对数据库进行降维,其中存储了多幅人脸图像,用于人脸识别。此外,它还被用于查找应该用于在数据集中保留一定数量方差的特征面孔的总数。这些特征脸后来被用来确定一个新的输入的脸图像是否可以被识别。使用xcvu11p-flga2577-1-e装置,在Vivado HLS中完成了高级合成。这项工作的目的是使PCA技术成为一种便携式的人脸识别设备,用于实时应用,如识别罪犯。1 引言 用最简单的术语来原创 2020-07-14 13:36:55 · 412 阅读 · 0 评论 -
Hardware Architecture Design Of Face Recognition System Based On FPGA
摘要本文提出了一种新颖的人脸识别系统硬件结构。为了使系统成本有效利用,我们还使用了一种高效人脸识别算法。 我们已经在cyclone III 可编程门阵列 (FPGA)芯片上设计、实现并验证了我们的算法。我们在装有cyclone III芯片的Altera DE0开发板上进行调试。 我们还确保低功率损耗,以便芯片可以普遍应用在安防系统中。为了在数字硬件上开发一个简单且高效的人脸识别算法,(如PCA, FFT等),我们已经使用MATLAB研究了许多人脸识别算法,并比较了它们在不同姿势和背景下的检测效率 以及算法原创 2020-07-13 21:37:52 · 149 阅读 · 0 评论 -
Multiple histogram-based face recognition with high speed FPGA implementation
摘要人脸识别是一种可以在注册的人脸数据库中识别或验证查找某一人脸的算法。它给图像分析和计算机视觉领域提出了挑战,特别是对于处理视频序列、人脸重新识别或对强度图像进行操作并需要快速处理的应用程序。在这项工作中,我们介绍了一种高速人脸识别技术和一个高速FPGA实现。它使用一种新的相似度量来估计查询的人脸和数据库中人脸的距离。距离度量是多个直方图之间的标准偏差之和,这些直方图是从查询和数据库图像的每一行计算出来的。 最低距离分数是指与查询人脸所匹配的数据库人脸(间的距离)。该方法与环境光照无关,优于著名的人脸识原创 2020-07-12 23:06:16 · 207 阅读 · 0 评论 -
Design and Implementation of an FPGA-based Real-Time Face Recognition System
摘要人脸识别系统在监视、生物识别和安全等许多应用中发挥着重要作用。在这项工作中,我们提出了一个完整的使用FPGA的实时人脸识别系统,包括人脸检测,识别和下采样模块。我们的系统为人脸识别提供端到端的解决方案;它从摄像头接收视频输入,使用Viola-Jones算法检测人脸的位置,随后使用特征脸算法识别每个人脸,并输出结果到显示器。实验结果表明,我们完整的人脸识别系统在一个Virtex-5 FPGA上以每秒45帧的速度运行。1 引言 在软件(开发算法解决方案)和硬件(创建物理实现)方面,人脸识别是一个具有原创 2020-07-11 22:57:06 · 439 阅读 · 0 评论 -
FPGA-based Low-Cost Real-Time Face Recognition
摘要如今,人脸识别在监控、生物识别和安全方面发挥着核心作用。本文提出了一种基于现场可编程门阵列(FPGA)的低成本实时人脸识别体系结构。人脸识别模块从视频流接收检测到的人脸,并使用广泛使用的特征脸(也称为主成分分析(PCA)算法)处理数据。该架构是在一个低成本的Zynq-Z7010 FPGA上实现的。这个结构是一个系统的一部分,它能够根据初步定义的一组人脸在人群中找到人脸。未来可以将其集成到频繁拥挤场所(如机场、公交车站)的实时监控系统中,梳理出假定的威胁来源,从而降低可能发生的犯罪行为的风险。1 引言原创 2020-07-11 13:35:51 · 334 阅读 · 2 评论 -
Deep Face Recognition
摘要 这篇论文的目标是人脸识别——从一张照片或视频中跟踪的一组人脸识别。这一领域最近的进展是由于两个因素:(i)使用卷积神经网络(CNN)对任务进行端到端学习,(ii)超大规模训练数据集的可用性。 我们做了两个贡献:首先,我们展示了一个非常大规模的数据集(260万幅图像,超过2.6万名人员)是如何通过循环中的自动和人工组合来组装的,并讨论了数据纯度和时间之间的权衡;其次,我们通过深入网络训练和人脸识别的复杂性,提出了在标准LFW和YTF人脸基准上达到比较先进结果的方法和步骤。1 引言 卷积神经原创 2020-07-05 17:38:37 · 634 阅读 · 0 评论 -
Face R-CNN
https://arxiv.org/abs/1706.01061摘要Faster R-CNN是最具代表性和最成功的目标检测方法之一,在各种目标检测应用中得到了越来越广泛的应用。在这篇报告中,我们提出了一种基于Faster R-CNN的鲁棒深度人脸检测方法。在我们的方法中,我们开发了一些新的技术,包括新的多任务损失函数设计、在线硬示例挖掘和多尺度训练策略,以在多个方面提高R-CNN的速度。该方法非常适合于人脸检测,因此我们称之为人脸R-CNN。在两个最流行和最具挑战性的人脸检测基准FDDB和更宽的脸上进行原创 2020-06-30 23:31:29 · 620 阅读 · 0 评论 -
Borrowing Treasures from the Wealthy: Deep Transfer Learning through SJFT
https://arxiv.org/abs/1702.08690https://github.com/ZYYSzj/ Selective-Joint-Fine-tuning摘要 在有监督学习的过程中,深度神经网络需要大量的有标签的训练数据。然而,收集和标记如此多的数据在许多情况下可能是不可行的。在本文中,我们引入了一个深度迁移学习方案,称为选择性联合微调,以提高训练数据不足的情况下深度学习任务的性能。在该方案中,一个训练数据不足的目标学习任务与另一个训练数据充足的源学习任务同时进行。然而,源学习任务原创 2020-06-29 15:44:34 · 299 阅读 · 0 评论 -
(CAAE)Age Progression/Regression by Conditional Adversarial Autoencoder
https://arxiv.org/abs/1702.08423https://github.com/ZZUTK/Face-Aging-CAAE摘要“如果我给你我的脸图像(没有告诉你实际的年龄,当我把图片)和大量的图片,我爬(包含标签的面孔不同年龄但不一定配对),你能告诉我我将是什么样子当我80或5的时候我怎么样?”答案可能是否定的。“现有的大多数人脸老化工作试图学习年龄组之间的转换,因此将需要配对样本和标记查询图像。在本文中,我们从生成建模的角度来看问题,这样就不需要成对的样本。此外,对于未标记的图原创 2020-06-27 17:05:23 · 1663 阅读 · 3 评论 -
NormFace: L2 HypersphereEmbeddingforFaceVerification
https://dl.acm.org/doi/10.1145/3123266.3123359摘要由于卷积神经网络的发展,人脸验证方法的性能得到了迅速提高。在典型的人脸验证方法中,特征归一化是提高性能的关键步骤。这促使我们在训练中引入和研究归一化的效果。但我们发现这不是平凡的,尽管归一化是可微的。通过数学分析,我们发现并研究了四个与归一化有关的问题,这有助于理解和设置参数。在此基础上,我们提出了两种使用归一化特征进行训练的策略。第一个是softmax损失的修改,优化余弦相似度,而不是内积。第二种是通过为每原创 2020-06-26 12:44:21 · 423 阅读 · 3 评论