复数的对数

本文探讨了复数对数的概念,打破了传统上对数函数定义域仅限于正实数的认知,并通过类比的方法解释了复数对数解的无限性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

复数的对数

前面推导过一般公式,现在加强一般性的概念,比如In (-1),因为-1是复数,所以In (-1)是有解的,打破

 

了以前In (x) 其中x必须为正数的思维。其中解的个数还是无穷的。

另外考虑解的个数问题,这里欧拉采用了类比的思维:

比如x=In y

y=e^x

Go

y=(e^w)^x/w

Go

y=(1+w)^x/w

GO

对于

y=(1+w)^n形式的函数来说,w有n个解,比如x=(1+y)^2两个解;比如x=(1+y)^3三个解;

因为x/w为无穷,所以上面有无数个解。

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值