复数的对数
前面推导过一般公式,现在加强一般性的概念,比如In (-1),因为-1是复数,所以In (-1)是有解的,打破
了以前In (x) 其中x必须为正数的思维。其中解的个数还是无穷的。
另外考虑解的个数问题,这里欧拉采用了类比的思维:
比如x=In y
y=e^x
Go
y=(e^w)^x/w
Go
y=(1+w)^x/w
GO
对于
y=(1+w)^n形式的函数来说,w有n个解,比如x=(1+y)^2两个解;比如x=(1+y)^3三个解;
因为x/w为无穷,所以上面有无数个解。