复变函数论2-解析函数3-初等多值函数3-对数函数1:复对数的定义【w=Lnz】【令复数z=reⁱᶿ,则z的对数w仍是复数,记w=u+iv,则:u=lnr=ln|z|;v=θ+2kπ】【无穷多值函数】

复数对数 Ln z 被定义为指数函数的反函数,当 ew = z(z ≠ 0, ∞)。 Ln z 的实部是 z 模的自然对数,虚部是 z 辐角的一般值,可取无穷多个,相差 2π 的整数倍。主值 ln z 在 -π < arg z ≤ π 时被定义,它是实对数在复数域内的推广,且负数在复数域内有无穷多值的复对数。" 130863221,7459758,zigbee双击控制呼吸灯功能实现,"['物联网', 'zigbee通信', '嵌入式开发', '硬件控制', '传感器网络']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

定义 2.10

我们规定对数函数是指数函数的反函数. 即若

e w = z ( z ≠ 0 , ∞ ) , ( 2.19 ) \mathrm{e}^{w}=z \quad(z \neq 0, \infty), \quad\quad(2.19) ew=z(z=0,),(2.19)

则复数 w w w 称为复数 z z z对数, 记为 w = L n z \color{red}{w=\mathrm{Ln} z} w=Lnz.

z = r e i θ , w = u + i v z=r \mathrm{e}^{\mathrm{i} \theta}, w=u+\mathrm{i} v z=reiθ,w=u+iv, 则 (2.19)就是

e u + i v = r e i θ , \mathrm{e}^{u+i v}=r \mathrm{e}^{\mathrm{i \theta}}, eu+iv=reiθ,

因而

u = ln ⁡ r , v = θ + 2 k π ( k = 0 , ± 1 , ± 2 , ⋯   ) , ( 2.20 ) u=\ln r, \quad v=\theta+2 k \pi \quad(k=0, \pm 1, \pm 2, \cdots), \quad\quad(2.20) u=lnr,v=θ+2(k=0,±1,±2,),(2.20)

故方程 (2.19) 的全部根是

 Ln  z = ln ⁡ r + i ( θ + 2 k π ) ( k = 0 , ± 1 , ± 2 , ⋯   ) , \text { Ln } z=\ln r+\mathrm{i}(\theta+2 k \pi) \quad(k=0, \pm 1, \pm 2, \cdots),  Ln z=lnr+i(θ+2)(k=0,±1,±2,),

Ln ⁡ z = ln ⁡ ∣ z ∣ + i Arg ⁡ z = ln ⁡ ∣

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值