定义 2.10
我们规定对数函数是指数函数的反函数. 即若
e w = z ( z ≠ 0 , ∞ ) , ( 2.19 ) \mathrm{e}^{w}=z \quad(z \neq 0, \infty), \quad\quad(2.19) ew=z(z=0,∞),(2.19)
则复数 w w w 称为复数 z z z 的对数, 记为 w = L n z \color{red}{w=\mathrm{Ln} z} w=Lnz.
令 z = r e i θ , w = u + i v z=r \mathrm{e}^{\mathrm{i} \theta}, w=u+\mathrm{i} v z=reiθ,w=u+iv, 则 (2.19)就是
e u + i v = r e i θ , \mathrm{e}^{u+i v}=r \mathrm{e}^{\mathrm{i \theta}}, eu+iv=reiθ,
因而
u = ln r , v = θ + 2 k π ( k = 0 , ± 1 , ± 2 , ⋯ ) , ( 2.20 ) u=\ln r, \quad v=\theta+2 k \pi \quad(k=0, \pm 1, \pm 2, \cdots), \quad\quad(2.20) u=lnr,v=θ+2kπ(k=0,±1,±2,⋯),(2.20)
故方程 (2.19) 的全部根是
Ln z = ln r + i ( θ + 2 k π ) ( k = 0 , ± 1 , ± 2 , ⋯ ) , \text { Ln } z=\ln r+\mathrm{i}(\theta+2 k \pi) \quad(k=0, \pm 1, \pm 2, \cdots), Ln z=lnr+i(θ+2kπ)(k=0,±1,±2,⋯),
或
Ln z = ln ∣ z ∣ + i Arg z = ln ∣