非线性方程的几种线性解法(二分法,不动点法和牛顿法)

非线性方程的几种线性解法

对于线性方程我们有很多方法来解,比如简单的线性方程都会有公式直接来计算。但是涉及到复杂的线性方程比如高阶多项式方程,非线性性方程也是很那直接求解的,在数值分析的角度就很容易来求解这类方程了。下面介绍的就是几种简单的非线性方程的数值解法。

二分法

由根的存在性定理:如果f(a)f(b)<0,我们判定至少存在一个根在区间[a,b]上。
那么下面我们怎么将这个范围内的根找出来呢?
二分法步骤:

  1. 先要确定一个有根的区间[a,b],假设f(a)>0,f(b)<0
  2. 判断[a,b]中点处c的函数值f( c),如果等于0,则这个中点就是一个根;如果大于0,则将根的范围缩小到[c,b];否则根的范围缩小到[a,c]。
  3. 这样就会到了第一步,知道范围缩小到达到我们的精度要求

二分法比较简单,但有一个很明显的缺点就是在区间内只能找出一个根,有时候会出现漏根的情况,用计算机处理起来还是很简单的。
在几何上的收敛过程为:
在这里插入图片描述

不动点法

首先要介绍书本上不动点的概念:
将方程
在这里插入图片描述
改写为
在这里插入图片描述
如果 在这里插入图片描述能满足这两个方程,则称这个值为以个不动点。不动点在几何上的反应就是一条曲线以一条直线的交点。
(以上是书面定义,我的理解就是方程的解或根)
不动点迭代法的具体步骤:
1.选择以个初始点x0,可求得:
2.如此反复的迭代计算可得 在这里插入图片描述
3.直到满足精度要求 ,理论上要迭代无穷次。在这里插入图片描述

迭代法有一个点需要注意,不是每一次的迭代都能找都解,因为并不是所有的迭代函数都是收敛的,下面就介绍迭代函数收敛的条件:(这个编辑器是在是太不好用,逼的我只能贴图片了)
在这里插入图片描述
我对这两点的理解就是,曲线要在直线的下方,并且曲线的斜率要小于1.
在几何上的收敛过程为
在这里插入图片描述

牛顿法

牛顿法的思想是将非线性转化为线性
具体过程为(我又要贴图了):在这里插入图片描述

在几何上的收敛过程为:(牛顿法亦称作切线法)
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值