本文将介绍如何基于 MATLAB 开发一个人脸识别系统,包括 GUI 设计、PCA 算法实现和 ORL 人脸库的使用。通过本系统,用户可以了解人脸识别的核心原理和实现过程,并扩展到实际应用场景(如考勤、门禁、无人超市等)。
系统设计概要
- 数据集:使用 ORL 人脸库(包含 40 个人,每人 10 张图片,共 400 张人脸图像)。
- 特征提取:通过 PCA(主成分分析)方法对人脸进行降维和特征提取。
- 人脸识别:使用测试图片与训练集比对,计算欧氏距离,识别最接近的训练集人脸。
- GUI 设计:创建用户友好的界面,用于输入测试图片、显示识别结果。
系统实现步骤
1. 加载 ORL 人脸库
ORL 人脸库的图像为灰度图像,尺寸为 112×92
。每个图像需要展开为向量以适应 PCA 算法。
% 加载 ORL 人脸库
function [trainData, labels] = loadORLData()
trainData = [];
labels = [];
for i = 1:40 % 40 个人
for j = 1:10 % 每人 10 张图片
filePath = sprintf('orl_faces/s%d/%d.pgm', i, j);
img = imread(filePath);
imgVector